ترغب بنشر مسار تعليمي؟ اضغط هنا

Weakening of the diamagnetic shielding in FeSe$_{1-x}$S$_x$ at high pressures

81   0   0.0 ( 0 )
 نشر من قبل Swee K. Goh
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The superconducting transition of FeSe$_{1-x}$S$_x$ with three distinct sulphur concentrations $x$ was studied under hydrostatic pressure up to $sim$70 kbar via bulk AC susceptibility. The pressure dependence of the superconducting transition temperature ($T_c$) features a small dome-shaped variation at low pressures for $x=0.04$ and $x=0.12$, followed by a more substantial $T_c$ enhancement to a value of around 30 K at moderate pressures. In $x=0.21$, a similar overall pressure dependence of $T_c$ is observed, except that the small dome at low pressures is flattened. For all three concentrations, a significant weakening of the diamagnetic shielding is observed beyond the pressure around which the maximum $T_c$ of 30 K is reached near the verge of pressure-induced magnetic phase. This observation points to a strong competition between the magnetic and high-$T_c$ superconducting states at high pressure in this system.



قيم البحث

اقرأ أيضاً

131 - S. Chibani , D. Farina , P. Massat 2020
We report the evolution of nematic fluctuations in FeSe$_{1-x}$S$_x$ single crystals as a function of Sulfur content $x$ across the nematic quantum critical point (QCP) $x_csim$ 0.17 via Raman scattering. The Raman spectra in the $B_{1g}$ nematic cha nnel consist of two components, but only the low energy one displays clear fingerprints of critical behavior and is attributed to itinerant carriers. Curie-Weiss analysis of the associated nematic susceptibility indicates a substantial effect of nemato-elastic coupling which shifts the location of the nematic QCP. We argue that this lattice-induced shift likely explains the absence of any enhancement of the superconducting transition temperature at the QCP. The presence of two components in the nematic fluctuations spectrum is attributed to the dual aspect of electronic degrees of freedom in Hunds metals, with both itinerant carriers and local moments contributing to the nematic susceptibility.
FeSe has a unique ground state in which superconductivity coexists with a nematic order without long-range magnetic ordering at ambient pressure. Here, to study how the pairing interaction evolves with nematicity, we measured the thermal conductivity and specific heat of FeSe$_{1-x}$S$_x$, where the nematicity is suppressed by isoelectronic sulfur substitution. We find that in the whole nematic ($0leq x leq 0.17$) and tetragonal ($x=0.20$) regimes, the application of small magnetic field causes a steep increase of both quantities. This indicates the existence of deep minima or line nodes in the superconducting gap function, implying that the pairing interaction is significantly anisotropic in both the nematic and the tetragonal regimes. Moreover, the present results indicate that the position of gap minima/nodes in the tetragonal regime appears to be essentially different from that in the nematic regime. These results place an important constraint on current theories.
Non-Fermi liquids are strange metals whose physical properties deviate qualitatively from those of conventional metals due to strong quantum fluctuations. In this paper, we report transport measurements on the FeSe$_{1-x}$S$_x$ superconductor, which has a quantum critical point of a nematic order without accompanying antiferromagnetism. We find that in addition to a linear-in-temperature resistivity $rho_{xx}propto T$, which is close to the Planckian limit, the Hall angle varies as $cot theta_{rm H} propto T^2$ and the low-field magnetoresistance is well scaled as $Deltarho_{xx}/rho_{xx}propto tan^2 theta_{rm H}$ in the vicinity of the nematic quantum critical point. This set of anomalous charge transport properties shows striking resemblance with those reported in cuprate, iron-pnictide and heavy fermion superconductors, demonstrating that the critical fluctuations of a nematic order with ${bf q} approx 0$ can also lead to a breakdown of the Fermi liquid description.
We report muon spin rotation ($mu$SR) and magnetization measurements under pressure on Fe$_{1+delta}$Se$_mathrm{1text{-}x}$S$_mathrm{x}$ with x $approx 0.11$.Above $papprox0.6$ GPa we find microscopic coexistence of superconductivity with an extended dome of long range magnetic order that spans a pressure range between previously reported separated magnetic phases. The magnetism initially competes on an atomic scale with the coexisting superconductivity leading to a local maximum and minimum of the superconducting $T_mathrm{c}(p)$. The maximum of $T_mathrm{c}$ corresponds to the onset of magnetism while the minimum coincides with the pressure of strongest competition. A shift of the maximum of $T_mathrm{c}(p)$ for a series of single crystals with x up to 0.14 roughly extrapolates to a putative magnetic and superconducting state at ambient pressure for x $geq0.2$.
Understanding superconductivity requires detailed knowledge of the normal electronic state from which it emerges. A nematic electronic state that breaks the rotational symmetry of the lattice can potentially promote unique scattering relevant for sup erconductivity. Here, we investigate the normal transport of superconducting FeSe$_{1-x}$S$_x$ across a nematic phase transition using high magnetic fields up to 69 T to establish the temperature and field-dependencies. We find that the nematic state is an anomalous non-Fermi liquid, dominated by a linear resistivity at low temperatures that can transform into a Fermi liquid, depending on the composition $x$ and the impurity level. Near the nematic end point, we find an extended temperature regime with $T^{1.5}$ resistivity. The transverse magnetoresistance inside the nematic phase has as a $H^{1.55}$ dependence over a large magnetic field range and it displays an unusual peak at low temperatures inside the nematic phase. Our study reveals anomalous transport inside the nematic phase, driven by the subtle interplay between the changes in the electronic structure of a multi-band system and the unusual scattering processes affected by large magnetic fields and disorder
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا