ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrothermal synthesis and complete phase diagram of FeSe$_{1-x}$S$_{x}$ $(0 leq x leq 1)$ single crystals

74   0   0.0 ( 0 )
 نشر من قبل Xiangzhuo Xing
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the successful synthesis of FeSe$_{1-x}$S$_{x}$ single crystals with $x$ ranging from 0 to 1 via a hydrothermal method. A complete phase diagram of FeSe$_{1-x}$S$_{x}$ has been obtained based on resistivity and magnetization measurements. The nematicity is suppressed with increasing $x$, and a small superconducting dome appears within the nematic phase. Outside the nematic phase, the superconductivity is continuously suppressed and reaches a minimum $T_c$ at $x$ = 0.45; beyond this point, $T_c$ slowly increases until $x$ = 1. Intriguingly, an anomalous resistivity upturn with a characteristic temperature $T^*$ in the intermediate region of $0.31 leq x leq 0.71$ is observed. $T^{*}$ shows a dome-like behavior with a maximum value at $x$ = 0.45, which is opposite the evolution of $T_c$, indicating competition between $T^*$ and superconductivity. The origin of $T^*$ is discussed in detail. Furthermore, the normal state resistivity evolves from non-Fermi-liquid to Fermi-liquid behavior with S doping at low temperatures, accompanied by a reduction in electronic correlations. Our study addresses the lack of single crystals in the high-S doping region and provides a complete phase diagram, which will promote the study of relations among nematicity, superconductivity, and magnetism.



قيم البحث

اقرأ أيضاً

We report on the emergence of robust superconducting order in single crystal alloys of 2H-TaSe$_{2-x}$S$_{x}$ (0$leq$x$leq$2) . The critical temperature of the alloy is surprisingly higher than that of the two end compounds TaSe$_{2}$ and TaS$_{2}$. The evolution of superconducting critical temperature T$_{c} (x)$ correlates with the full width at half maximum of the Bragg peaks and with the linear term of the high temperature resistivity. The conductivity of the crystals near the middle of the alloy series is higher or similar than that of either one of the end members 2H-TaSe$_{2}$ and/or 2H-TaS$_{2}$. It is known that in these materials superconductivity (SC) is in close competition with charge density wave (CDW) order. We interpret our experimental findings in a picture where disorder tilts this balance in favor of superconductivity by destroying the CDW order.
118 - J. Yang , T. Oka , Z. Li 2017
We report $^{75}$As nuclear magnetic resonance (NMR) / nuclear quadrupole resonance (NQR) and transmission electron microscopy (TEM) studies on LaFeAsO$_{1-x}$F$_{x}$. There are two superconducting domes in this material. The first one appears at 0.0 3 $leq$ $x$ $leq$ 0.2 with $T_{rm c}$$^{max}$ = 27 K, and the second one at 0.25 $leq$ $x$ $leq$ 0.75 with $T_{rm c}$$^{max}$ = 30 K. By NMR and TEM, we demonstrate that a $C4$-to-$C2$ structural phase transition (SPT) takes place above both domes, with the transition temperature $T_{rm s}$ varying strongly with $x$. In the first dome, the SPT is followed by an antiferromagnetic (AF) transition, but neither AF order nor low-energy spin fluctuations are found in the second dome. In LaFeAsO$_{0.97}$F$_{0.03}$, we find that AF order and superconductivity coexist microscopically via $^{75}$As nuclear spin-lattice relaxation rate (1/$T_1$) measurements. In the coexisting region, 1/$T_1$ decreases at $T_{rm c}$ but becomes to be proportional to $T$ below 0.6$T_{rm c}$, indicating gapless excitations. Therefore, in contrast to the early reports, the obtained phase diagram for $x leq$ 0.2 is quite similar to the doped BaFe$_{2}$As$_{2}$ system. The electrical resistivity in the second dome can be fitted by $rho = {{rho }_{0}}+A{{T}^{n}}$ with $n$ = 1 and a maximal coefficient $A$ at around $x_{opt}$ = 0.5$sim$0.55 where $T_{rm s}$ extrapolates to zero and $T_{rm c}$ is the maximal, which suggest the importance of quantum critical fluctuations associated with the SPT. We have constructed a complete phase diagram of LaFeAsO$_{1-x}$F$_{x}$, which provides insight into the relationship between SPT, antiferromagnetism and superconductivity.
Remarkably, doping isovalent $d^{10}$ and $d^0$ cations onto the $B$ site in $A_2B$$B$O$_6$ double perovskites has the power to direct the magnetic interactions between magnetic $B$ cations. This is due to changes in orbital hybridization, which favo rs different superexchange pathways, and leads to the formation of alternative magnetic structures depending on whether $B$ is $d^{10}$ or $d^0$. Furthermore, the competition generated by introducing mixtures of $d^{10}$ and $d^0$ cations can drive the material into the realms of exotic quantum magnetism. Here, a W$^{6+}$ $d^0$ dopant was introduced to a $d^{10}$ hexagonal perovskite Ba$_2$CuTeO$_6$, which possesses a spin ladder geometry of Cu$^{2+}$ cations, creating a Ba$_2$CuTe$_{1-x}$W$_x$O$_6$ solid solution ($x$ = 0 - 0.3). Neutron and synchrotron X-ray diffraction show that W$^{6+}$ is almost exclusively substituted for Te$^{6+}$ on the corner-sharing site within the spin ladder, in preference to the face-sharing site between ladders. This means the intra-ladder interactions are selectively tuned by the $d^0$ cations. Bulk magnetic measurements suggest this suppresses magnetic ordering in a similar manner to that observed for the spin-liquid like material Sr$_2$CuTe$_{1-x}$W$_x$O$_6$. This further demonstrates the utility of $d^{10}$ and $d^0$ dopants as a tool for tuning magnetic ground states in a wide range of perovskites and perovskite-derived structures.
Understanding superconductivity requires detailed knowledge of the normal electronic state from which it emerges. A nematic electronic state that breaks the rotational symmetry of the lattice can potentially promote unique scattering relevant for sup erconductivity. Here, we investigate the normal transport of superconducting FeSe$_{1-x}$S$_x$ across a nematic phase transition using high magnetic fields up to 69 T to establish the temperature and field-dependencies. We find that the nematic state is an anomalous non-Fermi liquid, dominated by a linear resistivity at low temperatures that can transform into a Fermi liquid, depending on the composition $x$ and the impurity level. Near the nematic end point, we find an extended temperature regime with $T^{1.5}$ resistivity. The transverse magnetoresistance inside the nematic phase has as a $H^{1.55}$ dependence over a large magnetic field range and it displays an unusual peak at low temperatures inside the nematic phase. Our study reveals anomalous transport inside the nematic phase, driven by the subtle interplay between the changes in the electronic structure of a multi-band system and the unusual scattering processes affected by large magnetic fields and disorder
129 - R. H. Liu , G. Wu , T. Wu 2008
The magnetic fluctuations associated with a quantum critical point (QCP) are widely believed to cause the non-Fermi liquid behaviors and unconventional superconductivities, for example, in heavy fermion systems and high temperature cuprate supercondu ctors. Recently, superconductivity has been discovered in iron-based layered compound $LaO_{1-x}F_xFeAs$ with $T_c$=26 Kcite{yoichi}, and it competes with spin-density-wave (SDW) ordercite{dong}. Neutron diffraction shows a long-rang SDW-type antiferromagnetic (AF) order at $sim 134$ K in LaOFeAscite{cruz,mcguire}. Therefore, a possible QCP and its role in this system are of great interests. Here we report the detailed phase diagram and anomalous transport properties of the new high-Tc superconductors $SmO_{1-x}F_xFeAs$ discovered by uscite{chenxh}. It is found that superconductivity emerges at $xsim$0.07, and optimal doping takes place in the $xsim$0.20 sample with highest $T_c sim $54 K. While $T_c$ increases monotonically with doping, the SDW order is rapidly suppressed, suggesting a QCP around $x sim$0.14. As manifestations, a linear temperature dependence of the resistivity shows up at high temperatures in the $x<0.14$ regime, but at low temperatures just above $T_c$ in the $x>0.14$ regime; a drop in carrier density evidenced by a pronounced rise in Hall coefficient are observed, which mimic the high-$T_c$ cuprates. The simultaneous occurrence of order, carrier density change and criticality makes a compelling case for a quantum critical point in this system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا