ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergence of the nematic electronic state in FeSe

196   0   0.0 ( 0 )
 نشر من قبل Amalia Coldea
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comprehensive study of the evolution of the nematic electronic structure of FeSe using high resolution angle-resolved photoemission spectroscopy (ARPES), quantum oscillations in the normal state and elastoresistance measurements. Our high resolution ARPES allows us to track the Fermi surface deformation from four-fold to two-fold symmetry across the structural transition at ~87 K which is stabilized as a result of the dramatic splitting of bands associated with dxz and dyz character. The low temperature Fermi surface is that a compensated metal consisting of one hole and two electron bands and is fully determined by combining the knowledge from ARPES and quantum oscillations. A manifestation of the nematic state is the significant increase in the nematic susceptibility as approaching the structural transition that we detect from our elastoresistance measurements on FeSe. The dramatic changes in electronic structure cannot be explained by the small lattice effects and, in the absence of magnetic fluctuations above the structural transition, points clearly towards an electronically driven transition in FeSe stabilized by orbital-charge ordering.



قيم البحث

اقرأ أيضاً

149 - J. Li , B. Lei , D. Zhao 2019
The importance of the spin-orbit coupling (SOC) effect in Fe-based superconductors (FeSCs) has recently been under hot debate. Considering the Hunds coupling-induced electronic correlation, the understanding of the role of SOC in FeSCs is not trivial and is still elusive. Here, through a comprehensive study of 77Se and 57Fe nuclear magnetic resonance, a nontrivial SOC effect is revealed in the nematic state of FeSe. First, the orbital-dependent spin susceptibility, determined by the anisotropy of the 57Fe Knight shift, indicates a predominant role from the 3dxy orbital, which suggests the coexistence of local and itinerant spin degrees of freedom (d.o.f.) in the FeSe. Then, we reconfirm that the orbital reconstruction below the nematic transition temperature (Tnem ~ 90 K) happens not only on the 3dxz and 3dyz orbitals but also on the 3dxy orbital, which is beyond a trivial ferro-orbital order picture. Moreover, our results also indicate the development of a coherent coupling between the local and itinerant spin d.o.f. below Tnem, which is ascribed to a Hunds coupling-induced electronic crossover on the 3dxy orbital. Finally, due to a nontrivial SOC effect, sizable in-plane anisotropy of the spin susceptibility emerges in the nematic state, suggesting a spin-orbital-intertwined nematicity rather than simply spin- or orbital-driven nematicity}. The present work not only reveals a nontrivial SOC effect in the nematic state but also sheds light on the mechanism of nematic transition in FeSe.
Understanding superconductivity requires detailed knowledge of the normal electronic state from which it emerges. A nematic electronic state that breaks the rotational symmetry of the lattice can potentially promote unique scattering relevant for sup erconductivity. Here, we investigate the normal transport of superconducting FeSe$_{1-x}$S$_x$ across a nematic phase transition using high magnetic fields up to 69 T to establish the temperature and field-dependencies. We find that the nematic state is an anomalous non-Fermi liquid, dominated by a linear resistivity at low temperatures that can transform into a Fermi liquid, depending on the composition $x$ and the impurity level. Near the nematic end point, we find an extended temperature regime with $T^{1.5}$ resistivity. The transverse magnetoresistance inside the nematic phase has as a $H^{1.55}$ dependence over a large magnetic field range and it displays an unusual peak at low temperatures inside the nematic phase. Our study reveals anomalous transport inside the nematic phase, driven by the subtle interplay between the changes in the electronic structure of a multi-band system and the unusual scattering processes affected by large magnetic fields and disorder
Electronically driven nematic order is often considered as an essential ingredient of high-temperature superconductivity. Its elusive nature in iron-based supercon- ductors resulted in a controversy not only as regards its origin but also as to the d egree of its influence on the electronic structure even in the simplest representative material FeSe. Here we utilized angle-resolved photoemission spectroscopy and density functional theory calculations to study the influence of the nematic order on the electronic structure of FeSe and determine its exact energy and momentum scales. Our results strongly suggest that the nematicity in FeSe is electronically driven, we resolve the recent controversy and provide the necessary quantitative experimental basis for a successful theory of superconductivity in iron-based materials which takes into account both, spin-orbit interaction and electronic nematicity.
96 - Amalia I. Coldea 2020
Isoelectronic substitution is an ideal tuning parameter to alter electronic states and correlations in iron-based superconductors. As this substitution takes place outside the conducting Fe planes, the electronic behaviour is less affected by the imp urity scattering experimentally and relevant key electronic parameters can be accessed. In this short review, I present the experimental progress made in understanding the electronic behaviour of the nematic electronic superconductors, FeSe1-xSx. A direct signature of the nematic electronic state is in-plane anisotropic distortion of the Fermi surface triggered by orbital ordering effects and electronic interactions that result in multi-band shifts detected by ARPES. Upon sulphur substitution, the electronic correlations and the Fermi velocities decrease in the tetragonal phase. Quantum oscillations are observed for the whole series in ultra-high magnetic fields and show a complex spectra due to the presence of many small orbits. Effective masses associated to the largest orbit display non-divergent behaviour at the nematic end point (x~0.175(5)), as opposed to critical spin-fluctuations in other iron pnictides. Magnetotransport behaviour has a strong deviation from the Fermi liquid behaviour and linear T resistivity is detected at low temperatures inside the nematic phase, where scattering from low energy spin-fluctuations are likely to be present. The superconductivity is not enhanced in FeSe1-xSx and there are no divergent electronic correlations at the nematic end point. These manifestations indicate a strong coupling with the lattice in FeSe1-xSx and a pairing mechanism likely promoted by spin fluctuations.
307 - Junfeng He , Xu Liu , Wenhao Zhang 2014
In high temperature cuprate superconductors, it is now generally agreed that the parent compound is a Mott insulator and superconductivity is realized by doping the antiferromagnetic Mott insulator. In the iron-based superconductors, however, the par ent compound is mostly antiferromagnetic metal, raising a debate on whether an appropriate starting point should go with an itinerant picture or a localized picture. It has been proposed theoretically that the parent compound of the iron-based superconductors may be on the verge of a Mott insulator, but so far no clear experimental evidence of doping-induced Mott transition has been available. Here we report an electronic evidence of an insulator-superconductor transition observed in the single-layer FeSe films grown on the SrTiO3 substrate. By taking angle-resolved photoemission measurements on the electronic structure and energy gap, we have identified a clear evolution of an insulator to a superconductor with the increasing doping. This observation represents the first example of an insulator-superconductor transition via doping observed in the iron-based superconductors. It indicates that the parent compound of the iron-based superconductors is in proximity of a Mott insulator and strong electron correlation should be considered in describing the iron-based superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا