ﻻ يوجد ملخص باللغة العربية
Winds in Titans lower and middle atmosphere have been determined by a variety of techniques, including direct measurements from the Huygens Probe over 0-150 km, Doppler shifts of molecular spectral lines in the optical, thermal infrared and mm ranges, probing altogether the ~100-450 km altitude range, and inferences from thermal field over 10 mbar - 10 -3 mbar (i.e. ~100-500 km) and from central flashes in stellar occultation curves. These measurements predominantly indicated strong prograde winds, reaching maximum speeds of ~150-200 m/s in the upper stratosphere, with important latitudinal and seasonal variations. However, these observations provided incomplete atmospheric sounding; in particular, the wind regime in Titans upper mesosphere and thermosphere (500- 1200 km) has remained unconstrained so far. Here we report direct wind measurements based on Doppler shifts of six molecular species observed with ALMA. We show that unlike expectations, strong prograde winds extend up to the thermosphere, with the circulation progressively turning into an equatorial jet regime as altitude increases, reaching ~340 m/s at 1000 km. We suggest that these winds may represent the dynamical response of forcing by waves launched at upper stratospheric/mesospheric levels and/or magnetospheric-ionospheric interaction. We also demonstrate that the HNC distribution is restricted to Titans thermosphere above ~870 km altitude.
Similar to Earth, Saturns largest moon, Titan, possesses a system of high-altitude zonal winds (or jets) that encircle the globe. Using the Atacama Large Millimeter/submillimeter Array (ALMA) in August 2016, Lellouch et al. (2019) discovered an equat
Conditions on Saturns moon Titan suggest dust devils, which are convective, dust-laden plumes, may be active. Although the exact nature of dust on Titan is unclear, previous observations confirm an active aeolian cycle, and dust devils may play an im
The atmosphere of Titan, the largest moon of Saturn, is rich in organic molecules, and it has been suggested that the moon may serve as an analog for the pre-biotic Earth due to its highly reducing chemistry and existence of global hazes. Photochemic
We retrieve vertical and meridional variations of methane mole fraction in Titans lower troposphere by re-analyzing near-infrared ground-based observations from 17 July 2014 UT (Adamkovics et al., 2016). We generate synthetic spectra using atmospheri
We report the first detection on Titan of the small cyclic molecule cyclopropenylidene (c-C3H2) from high sensitivity spectroscopic observations made with the Atacama Large Millimeter/sub-millimeter Array (ALMA). Multiple lines of cyclopropenylidene