ﻻ يوجد ملخص باللغة العربية
Similar to Earth, Saturns largest moon, Titan, possesses a system of high-altitude zonal winds (or jets) that encircle the globe. Using the Atacama Large Millimeter/submillimeter Array (ALMA) in August 2016, Lellouch et al. (2019) discovered an equatorial jet at much higher altitudes than previously known, with a surprisingly fast speed of up to ~340 m/s, but the origin of such high velocities is not yet understood. We obtained spectrally and spatially resolved ALMA observations in May 2017 to map Titans 3D global wind field and compare our results with a reanalysis of the August 2016 data. Doppler wind velocity maps were derived in the altitude range ~300-1000 km (from the upper stratosphere to the thermosphere). At the highest, thermospheric altitudes, a 47% reduction in the equatorial zonal wind speed was measured over the 9-month period (corresponding to L_s = 82-90 degrees on Titan). This is interpreted as due to a dramatic slowing and loss of confinement (broadening) of the recently-discovered thermospheric equatorial jet, as a result of dynamical instability. These unexpectedly-rapid changes in the upper-atmospheric dynamics are consistent with strong variability of the jets primary driving mechanism.
Winds in Titans lower and middle atmosphere have been determined by a variety of techniques, including direct measurements from the Huygens Probe over 0-150 km, Doppler shifts of molecular spectral lines in the optical, thermal infrared and mm ranges
Titan harbors a dense, organic-rich atmosphere primarily composed of N$_2$ and CH$_4$, with lesser amounts of hydrocarbons and nitrogen-bearing species. As a result of high sensitivity observations by the Atacama Large Millimeter/submillimeter Array
A self-interacting dark matter halo can experience gravothermal collapse, resulting in a central core with an ultrahigh density. It can further contract and collapse into a black hole, a mechanism proposed to explain the origin of supermassive black
Numerous geological features that could be evaporitic in origin have been identified on the surface of Titan. Although they seem to be water-ice poor, their main properties -chemical composition, thickness, stratification- are essentially unknown. In
We investigate the effects of varying Saturns orbit on the atmospheric circulation and surface methane distribution of Titan. Using a new general circulation model of Titans atmosphere, we simulate its climate under four characteristic configurations