ترغب بنشر مسار تعليمي؟ اضغط هنا

The near-surface methane humidity on Titan

213   0   0.0 ( 0 )
 نشر من قبل Juan Lora
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We retrieve vertical and meridional variations of methane mole fraction in Titans lower troposphere by re-analyzing near-infrared ground-based observations from 17 July 2014 UT (Adamkovics et al., 2016). We generate synthetic spectra using atmospheric methane profiles that do not contain supersaturation or discontinuities to fit the observations, and thereby retrieve minimum saturation altitudes and corresponding specific humidities in the boundary layer. We relate these in turn to surface-level relative humidities using independent surface temperature measurements. We also compare our results with general circulation model simulations to interpret and constrain the relationship between humidities and surface liquids. The results show that Titans lower troposphere is undersaturated at latitudes south of 60N, consistent with a dry surface there, but increases in humidity toward the north pole indicate appreciable surface liquid coverage. While our observations are consistent with considerably more liquid methane existing at the north pole than is present in observed lakes, a degeneracy between low-level methane and haze leads to substantial uncertainty in determining the extent of the source region.



قيم البحث

اقرأ أيضاً

We have obtained spatially resolved spectra of Titan in the near-infrared J, H and K bands at a resolving power of ~5000 using the near-infrared integral field spectrometer (NIFS) on the Gemini North 8m telescope. Using recent data from the Cassini/H uygens mission on the atmospheric composition and surface and aerosol properties, we develop a multiple-scattering radiative transfer model for the Titan atmosphere. The Titan spectrum at these wavelengths is dominated by absorption due to methane with a series of strong absorption band systems separated by window regions where the surface of Titan can be seen. We use a line-by-line approach to derive the methane absorption coefficients. The methane spectrum is only accurately represented in standard line lists down to ~2.1 {mu}m. However, by making use of recent laboratory data and modeling of the methane spectrum we are able to construct a new line list that can be used down to 1.3 {mu}m. The new line list allows us to generate spectra that are a good match to the observations at all wavelengths longer than 1.3 {mu}m and allow us to model regions, such as the 1.55 {mu}m window that could not be studied usefully with previous line lists such as HITRAN 2008. We point out the importance of the far-wing line shape of strong methane lines in determining the shape of the methane windows. Line shapes with Lorentzian, and sub-Lorentzian regions are needed to match the shape of the windows, but different shape parameters are needed for the 1.55 {mu}m and 2 {mu}m windows. After the methane lines are modelled our observations are sensitive to additional absorptions, and we use the data in the 1.55 {mu}m region to determine a D/H ratio of 1.77 pm 0.20 x 10-4, and a CO mixing ratio of 50 pm 11 ppmv. In the 2 {mu}m window we detect absorption features that can be identified with the { u}5+3{ u}6 and 2{ u}3+2{ u}6 bands of CH3D.
We investigate the global seasonal variations of near-surface relative humidity and relevant attributes, like temperature and water vapor volume mixing ratio on Mars using calculations from modelled and measurement data. We focus on 2 am local time s napshots to eliminate daily effects related to differences in insolation, and to be able to compare calculations based on modelling data from the LMDZ GCM with the observations of MGS TES. We study the seasonal effects by examining four specific dates in the Martian year, the northern spring equinox, summer solstice, autumn equinox and winter solstice. We identify three specific zones, where the near-surface relative humidity levels are systematically higher than in their vicinity regardless of season. We find that these areas coincide with low thermal inertia features, which control surface temperatures on the planet, and are most likely covered with unconsolidated fine dust with grain sizes less than $sim$ 40$mu$m. By comparing the data of relative humidity, temperature and water vapor volume mixing ratio at two different heights (near-surface, $sim$ 23 m above the surface), we demonstrate that the thermal inertia could play an important role in determining near-surface humidity levels. We also notice that during the night the water vapor levels drop at $sim$ 4 m above the surface. This, together with the temperature and thermal inertia values, shows that water vapor likely condenses in the near-surface atmosphere and on the ground during the night at the three aforementioned regions. This condensation may be in the form of brines, wettening of the fine grains or deliquescence. This study specifies areas of interest on the surface of present day Mars for the proposed condensation, which may be examined by in-situ measurements in the future.
105 - Xinting Yu , Sarah Horst , Chao He 2020
The photochemical haze produced in the upper atmosphere of Titan plays a key role in various atmospheric and surface processes on Titan. The surface energy, one important physical properties of the haze, is crucial for understanding the growth of the haze particles and can be used to predict their wetting behavior with solid and liquid species on Titan. We produced Titan analog haze materials, so-called tholin, with different energy sources and measured their surface energies through contact angle and direct force measurements. From the contact angle measurement, we found that the tholins produced by cold plasma and UV irradiation have total surface energy around 60-70 mJ/m2. The direct force measurement yields a total surface energy of ~66 mJ/m2 for plasma tholin. The surface energy of tholin is relatively high compared to common polymers, indicating its high cohesiveness. Therefore, the Titan haze particles would likely coagulate easily to form bigger particles, while the haze-derived surface sand particles would need higher wind speed to be mobilized because of the high interparticle cohesion. The high surface energy of tholins also makes them easily wettable by Titans atmospheric hydrocarbon condensates and surface liquids. Thus, the hazes particles are likely good cloud condensation nuclei (CCN) for hydrocarbon clouds (methane and ethane) to nucleate and grow. And if the hazes particles are denser compared to the lake liquids, they would likely sink into the lakes instead of forming a floating film to dampen the lake surface waves.
Conditions on Saturns moon Titan suggest dust devils, which are convective, dust-laden plumes, may be active. Although the exact nature of dust on Titan is unclear, previous observations confirm an active aeolian cycle, and dust devils may play an im portant role in Titans aeolian cycle, possibly contributing to regional transport of dust and even production of sand grains. The Dragonfly mission to Titan will document dust devil and convective vortex activity and thereby provide a new window into these features, and our analysis shows that associated winds are likely to be modest and pose no hazard to the mission.
The atmosphere of Titan, the largest moon of Saturn, is rich in organic molecules, and it has been suggested that the moon may serve as an analog for the pre-biotic Earth due to its highly reducing chemistry and existence of global hazes. Photochemic al models of Titan have predicted the presence of propadiene (historically referred to as allene), CH$_{2}$CCH$_{2}$, an isomer of the well-measured propyne (also called methylacetylene) CH$_{3}$CCH, but its detection has remained elusive due to insufficient spectroscopic knowledge of the molecule - which has recently been remedied with an updated spectral line list. Here we present the first unambiguous detection of the molecule in any astronomical object, observed with the Texas Echelle Cross Echelle Spectrograph (TEXES) on the NASA Infrared Telescope Facility (IRTF) in July 2017. We model its emission line near 12 $mu$m and measure a volume mixing ratio (VMR) of (6.9 $pm$ 0.8) $times$10$^{-10}$ at 175 km, assuming a vertically increasing abundance profile as predicted in photochemical models. Cassini measurements of propyne made during April 2017 indicate that the abundance ratio of propyne to propadiene is 8.2$pm$1.1 at the same altitude. This initial measurement of the molecule in Titans stratosphere paves the way towards constraining the amount of atomic hydrogen available on Titan, as well as future mapping of propadiene on Titan from 8 meter and larger ground based observatories, and future detection on other planetary bodies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا