ترغب بنشر مسار تعليمي؟ اضغط هنا

Memory effect in Yang-Mills theory

124   0   0.0 ( 0 )
 نشر من قبل Niko Jokela
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the empirical realisation of the memory effect in Yang-Mills theory, especially in view of the classical vs. quantum nature of the theory. Gauge invariant analysis of memory in classical U(1) electrodynamics and its observation by total change of transverse momentum of a charge is reviewed. Gauge fixing leads to a determination of a gauge transformation at infinity. An example of Yang-Mills memory then is obtained by reinterpreting known results on interactions of a quark and a large high energy nucleus in the theory of Color Glass Condensate. The memory signal is again a kick in transverse momentum, but it is only obtained in quantum theory after fixing the gauge, after summing over an ensemble of classical processes.



قيم البحث

اقرأ أيضاً

We study the empirical realization of the memory effect in Yang-Mills theory with an axion-like particle, especially in view of the classical vs. quantum nature of the theory. We solve for the coupled equations of motion iteratively in the axionic co ntributions and explicitly display the gauge invariant effects in terms of field strengths. We apply our results in the context of heavy ion collisions, in the thin nuclear sheet limit, and point out that a probe particle traversing radiation train acquires a longitudinal null memory kick in addition to the usual transverse kick.
From pure Yang-Mills action for the $SL(5,mathbb{R})$ group in four Euclidean dimensions we obtain a gravity theory in the first order formalism. Besides the Einstein-Hilbert term, the effective gravity has a cosmological constant term, a curvature s quared term, a torsion squared term and a matter sector. To obtain such geometrodynamical theory, asymptotic freedom and the Gribov parameter (soft BRST symmetry breaking) are crucial. Particularly, Newton and cosmological constant are related to these parameters and they also run as functions of the energy scale. One-loop computations are performed and the results are interpreted.
98 - Marco Frasca 2016
We show that, starting from known exact classical solutions of the Yang-Mills theory in three dimensions, the string tension is obtained and the potential is consistent with a marginally confining theory. The potential we obtain agrees fairly well wi th preceding findings in literature but here we derive it analytically from the theory without further assumptions. The string tension is in strict agreement with lattice results and the well-known theoretical result by Karabali-Kim-Nair analysis. Classical solutions depend on a dimensionless numerical factor arising from integration. This factor enters into the determination of the spectrum and has been arbitrarily introduced in some theoretical models. We derive it directly from the solutions of the theory and is now fully justified. The agreement obtained with the lattice results for the ground state of the theory is well below 1% at any value of the degree of the group.
In this paper an intrinsically non-Abelian black hole solution for the SU(2) Einstein-Yang-Mills theory in four dimensions is constructed. The gauge field of this solution has the form of a meron whereas the metric is the one of a Reissner-Nordstrom black hole in which, however, the coefficient of the $1/r^2$ term is not an integration constant. Even if the stress-energy tensor of the Yang-Mills field is spherically symmetric, the field strength of the Yang-Mills field itself is not. A remarkable consequence of this fact, which allows to distinguish the present solution from essentially Abelian configurations, is the Jackiw, Rebbi, Hasenfratz, t Hooft mechanism according to which excitations of bosonic fields moving in the background of a gauge field with this characteristic behave as Fermionic degrees of freedom.
411 - J. Bjoraker 2000
A continuum of monopole, dyon and black hole solutions exist in the Einstein-Yang-Mills theory in asymptotically anti-de Sitter space. Their structure is studied in detail. The solutions are classified by non-Abelian electric and magnetic charges and the ADM mass. The stability of the solutions which have no node in non-Abelian magnetic fields is established. There exist critical spacetime solutions which terminate at a finite radius, and have universal behavior. The moduli space of the solutions exhibits a fractal structure as the cosmological constant approaches zero.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا