ﻻ يوجد ملخص باللغة العربية
We study the empirical realization of the memory effect in Yang-Mills theory with an axion-like particle, especially in view of the classical vs. quantum nature of the theory. We solve for the coupled equations of motion iteratively in the axionic contributions and explicitly display the gauge invariant effects in terms of field strengths. We apply our results in the context of heavy ion collisions, in the thin nuclear sheet limit, and point out that a probe particle traversing radiation train acquires a longitudinal null memory kick in addition to the usual transverse kick.
We study the empirical realisation of the memory effect in Yang-Mills theory, especially in view of the classical vs. quantum nature of the theory. Gauge invariant analysis of memory in classical U(1) electrodynamics and its observation by total chan
We obtain the next-to-leading order correction to the spectrum of a SU(N) Yang-Mills theory in four dimensions and we show agreement well-below 1% with respect to the lattice computations for the ground state and one of the higher states.
We solve exactly the Dyson-Schwinger equations for Yang-Mills theory in 3 and 4 dimensions. This permits us to obtain the exact correlation functions till order 2. In this way, the spectrum of the theory is straightforwardly obtained and comparison w
The width of the quantum delocalization of the QCD strings is investigated in effective string models beyond free Nambu-Goto approximation. We consider two Lorentzian-invariant boundary-terms in the Luscher-Weisz string action in addition to self-int
In this paper we introduce a set of equations on a principal bundle over a compact complex manifold coupling a connection on the principal bundle, a section of an associated bundle with Kahler fibre, and a Kahler structure on the base. These equation