ﻻ يوجد ملخص باللغة العربية
A continuum of monopole, dyon and black hole solutions exist in the Einstein-Yang-Mills theory in asymptotically anti-de Sitter space. Their structure is studied in detail. The solutions are classified by non-Abelian electric and magnetic charges and the ADM mass. The stability of the solutions which have no node in non-Abelian magnetic fields is established. There exist critical spacetime solutions which terminate at a finite radius, and have universal behavior. The moduli space of the solutions exhibits a fractal structure as the cosmological constant approaches zero.
In this paper an intrinsically non-Abelian black hole solution for the SU(2) Einstein-Yang-Mills theory in four dimensions is constructed. The gauge field of this solution has the form of a meron whereas the metric is the one of a Reissner-Nordstrom
In this paper, we formulate two new classes of black hole solutions in higher curvature quartic quasitopological gravity with nonabelian Yang-Mills theory. At first step, we consider the $SO(n)$ and $SO(n-1,1)$ semisimple gauge groups. We obtain the
We study the empirical realisation of the memory effect in Yang-Mills theory, especially in view of the classical vs. quantum nature of the theory. Gauge invariant analysis of memory in classical U(1) electrodynamics and its observation by total chan
We construct exact solutions, which represent regular charged rotating Kaluza-Klein multi-black holes in the five-dimensional pure Einstein-Maxwell theory. Quantization conditions between the mass, the angular momentum, and charges appear from the re
Two analytic examples of globally regular non-Abelian gravitating solitons in the Einstein-Yang-Mills-Higgs theory in (3+1)-dimensions are presented. In both cases, the space-time geometries are of the Nariai type and the Yang-Mills field is complete