ﻻ يوجد ملخص باللغة العربية
In this paper an intrinsically non-Abelian black hole solution for the SU(2) Einstein-Yang-Mills theory in four dimensions is constructed. The gauge field of this solution has the form of a meron whereas the metric is the one of a Reissner-Nordstrom black hole in which, however, the coefficient of the $1/r^2$ term is not an integration constant. Even if the stress-energy tensor of the Yang-Mills field is spherically symmetric, the field strength of the Yang-Mills field itself is not. A remarkable consequence of this fact, which allows to distinguish the present solution from essentially Abelian configurations, is the Jackiw, Rebbi, Hasenfratz, t Hooft mechanism according to which excitations of bosonic fields moving in the background of a gauge field with this characteristic behave as Fermionic degrees of freedom.
A continuum of monopole, dyon and black hole solutions exist in the Einstein-Yang-Mills theory in asymptotically anti-de Sitter space. Their structure is studied in detail. The solutions are classified by non-Abelian electric and magnetic charges and
In this paper, we formulate two new classes of black hole solutions in higher curvature quartic quasitopological gravity with nonabelian Yang-Mills theory. At first step, we consider the $SO(n)$ and $SO(n-1,1)$ semisimple gauge groups. We obtain the
We study the empirical realisation of the memory effect in Yang-Mills theory, especially in view of the classical vs. quantum nature of the theory. Gauge invariant analysis of memory in classical U(1) electrodynamics and its observation by total chan
We study unified N=2 Maxwell-Einstein supergravity theories (MESGTs) and unified Yang-Mills Einstein supergravity theories (YMESGTs) in four dimensions. As their defining property, these theories admit the action of a global or local symmetry group t
We examine the mechanical matrix model that can be derived from the SU(2) Yang-Mills light-cone field theory by restricting the gauge fields to depend on the light-cone time alone. We use Diracs generalized Hamiltonian approach. In contrast to its we