ﻻ يوجد ملخص باللغة العربية
In this note, we present a version of Hoeffdings inequality in a continuous-time setting, where the data stream comes from a uniformly ergodic diffusion process. Similar to the well-studied case of Hoeffdings inequality for discrete-time uniformly ergodic Markov chain, the proof relies on techniques ranging from martingale theory to classical Hoeffdings lemma as well as the notion of deviation kernel of diffusion process. We present two examples to illustrate our results. In the first example we consider large deviation probability on the occupation time of the Jacobi diffusion, a popular process used in modelling of exchange rates in mathematical finance, while in the second example we look at the exponential functional of a finite interval analogue of the Ornstein-Uhlenbeck process introduced by Kessler and S{o}rensen (1999).
We prove a new concentration inequality for U-statistics of order two for uniformly ergodic Markov chains. Working with bounded and $pi$-canonical kernels, we show that we can recover the convergence rate of Arcones and Gin{e} who proved a concentrat
In this paper, we consider a multidimensional ergodic diffusion with jumps driven by a Brownian motion and a Poisson random measure associated with a pure-jump Levy process with finite Levy measure, whose drift coefficient depends on an unknown param
In this paper we consider an ergodic diffusion process with jumps whose drift coefficient depends on an unknown parameter $theta$. We suppose that the process is discretely observed at the instants (t n i)i=0,...,n with $Delta$n = sup i=0,...,n--1 (t
We consider a controlled second order differential equation which is partially observed with an additional fractional noise. we study the asymptotic (for large observation time) design problem of the input and give an efficient estimator of the unkno
A tight upper bound is given on the distribution of the maximum of a supermartingale. Specifically, it is shown that if $Y$ is a semimartingale with initial value zero and quadratic variation process $[Y,Y]$ such that $Y + [Y,Y]$ is a supermartingale