ترغب بنشر مسار تعليمي؟ اضغط هنا

Contrast function estimation for the drift parameter of ergodic jump diffusion process

126   0   0.0 ( 0 )
 نشر من قبل Arnaud Gloter
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Chiara Amorino




اسأل ChatGPT حول البحث

In this paper we consider an ergodic diffusion process with jumps whose drift coefficient depends on an unknown parameter $theta$. We suppose that the process is discretely observed at the instants (t n i)i=0,...,n with $Delta$n = sup i=0,...,n--1 (t n i+1 -- t n i) $rightarrow$ 0. We introduce an estimator of $theta$, based on a contrast function, which is efficient without requiring any conditions on the rate at which $Delta$n $rightarrow$ 0, and where we allow the observed process to have non summable jumps. This extends earlier results where the condition n$Delta$ 3 n $rightarrow$ 0 was needed (see [10],[24]) and where the process was supposed to have summable jumps. Moreover, in the case of a finite jump activity, we propose explicit approximations of the contrast function, such that the efficient estimation of $theta$ is feasible under the condition that n$Delta$ k n $rightarrow$ 0 where k > 0 can be arbitrarily large. This extends the results obtained by Kessler [15] in the case of continuous processes. L{e}vy-driven SDE, efficient drift estimation, high frequency data, ergodic properties, thresholding methods.



قيم البحث

اقرأ أيضاً

We aim at estimating the invariant density associated to a stochastic differential equation with jumps in low dimension, which is for $d=1$ and $d=2$. We consider a class of jump diffusion processes whose invariant density belongs to some Holder spac e. Firstly, in dimension one, we show that the kernel density estimator achieves the convergence rate $frac{1}{T}$, which is the optimal rate in the absence of jumps. This improves the convergence rate obtained in [Amorino, Gloter (2021)], which depends on the Blumenthal-Getoor index for $d=1$ and is equal to $frac{log T}{T}$ for $d=2$. Secondly, we show that is not possible to find an estimator with faster rates of estimation. Indeed, we get some lower bounds with the same rates ${frac{1}{T},frac{log T}{T}}$ in the mono and bi-dimensional cases, respectively. Finally, we obtain the asymptotic normality of the estimator in the one-dimensional case.
We consider the problem of statistical inference for the effective dynamics of multiscale diffusion processes with (at least) two widely separated characteristic time scales. More precisely, we seek to determine parameters in the effective equation d escribing the dynamics on the longer diffusive time scale, i.e. in a homogenization framework. We examine the case where both the drift and the diffusion coefficients in the effective dynamics are space-dependent and depend on multiple unknown parameters. It is known that classical estimators, such as Maximum Likelihood and Quadratic Variation of the Path Estimators, fail to obtain reasonable estimates for parameters in the effective dynamics when based on observations of the underlying multiscale diffusion. We propose a novel algorithm for estimating both the drift and diffusion coefficients in the effective dynamics based on a semi-parametric framework. We demonstrate by means of extensive numerical simulations of a number of selected examples that the algorithm performs well when applied to data from a multiscale diffusion. These examples also illustrate that the algorithm can be used effectively to obtain accurate and unbiased estimates.
196 - Yusuke Shimizu 2015
We propose an update estimation method for a diffusion parameter from high-frequency dependent data under a nuisance drift element. We ensure the asymptotic equivalence of the estimator to the corresponding quasi-MLE, which has the asymptotic normali ty and the asymptotic efficiency. We give a simulation example to illustrate the theory.
In this paper,we consider a macro approximation of the flow of a risk reserve, The process is observed at discrete time points. Because we cannot directly observe each jump time and size then we will make use of a technique for identifying the times when jumps larger than a suitably defined threshold occurred. We estimate the jump size and survival probability of our risk process from discrete observations.
We consider the nonparametric functional estimation of the drift of a Gaussian process via minimax and Bayes estimators. In this context, we construct superefficient estimators of Stein type for such drifts using the Malliavin integration by parts fo rmula and superharmonic functionals on Gaussian space. Our results are illustrated by numerical simulations and extend the construction of James--Stein type estimators for Gaussian processes by Berger and Wolpert [J. Multivariate Anal. 13 (1983) 401--424].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا