ترغب بنشر مسار تعليمي؟ اضغط هنا

Concentration inequality for U-statistics of order two for uniformly ergodic Markov chains

66   0   0.0 ( 0 )
 نشر من قبل Quentin Duchemin
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Quentin Duchemin




اسأل ChatGPT حول البحث

We prove a new concentration inequality for U-statistics of order two for uniformly ergodic Markov chains. Working with bounded and $pi$-canonical kernels, we show that we can recover the convergence rate of Arcones and Gin{e} who proved a concentration result for U-statistics of independent random variables and canonical kernels. Our result allows for a dependence of the kernels $h_{i,j}$ with the indexes in the sums, which prevents the use of standard blocking tools. Our proof relies on an inductive analysis where we use martingale techniques, uniform ergodicity, Nummelin splitting and Bernsteins type inequality. Assuming further that the Markov chain starts from its invariant distribution, we prove a Bernstein-type concentration inequality that provides sharper convergence rate for small variance terms.



قيم البحث

اقرأ أيضاً

In this note, we present a version of Hoeffdings inequality in a continuous-time setting, where the data stream comes from a uniformly ergodic diffusion process. Similar to the well-studied case of Hoeffdings inequality for discrete-time uniformly er godic Markov chain, the proof relies on techniques ranging from martingale theory to classical Hoeffdings lemma as well as the notion of deviation kernel of diffusion process. We present two examples to illustrate our results. In the first example we consider large deviation probability on the occupation time of the Jacobi diffusion, a popular process used in modelling of exchange rates in mathematical finance, while in the second example we look at the exponential functional of a finite interval analogue of the Ornstein-Uhlenbeck process introduced by Kessler and S{o}rensen (1999).
We prove that moderate deviations for empirical measures for countable nonhomogeneous Markov chains hold under the assumption of uniform convergence of transition probability matrices for countable nonhomogeneous Markov chains in Ces`aro sense.
253 - Samuel Herrmann 2013
The influence of a time-periodic forcing on stochastic processes can essentially be emphasized in the large time behaviour of their paths. The statistics of transition in a simple Markov chain model permits to quantify this influence. In particular t he first Floquet multiplier of the associated generating function can be explicitly computed and related to the equilibrium probability measure of an associated process in higher dimension. An application to the stochastic resonance is presented.
Our purpose is to prove central limit theorem for countable nonhomogeneous Markov chain under the condition of uniform convergence of transition probability matrices for countable nonhomogeneous Markov chain in Ces`aro sense. Furthermore, we obtain a corresponding moderate deviation theorem for countable nonhomogeneous Markov chain by Gartner-Ellis theorem and exponential equivalent method.
149 - G. Morvai , B. Weiss 2007
We describe estimators $chi_n(X_0,X_1,...,X_n)$, which when applied to an unknown stationary process taking values from a countable alphabet ${cal X}$, converge almost surely to $k$ in case the process is a $k$-th order Markov chain and to infinity otherwise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا