ﻻ يوجد ملخص باللغة العربية
A tight upper bound is given on the distribution of the maximum of a supermartingale. Specifically, it is shown that if $Y$ is a semimartingale with initial value zero and quadratic variation process $[Y,Y]$ such that $Y + [Y,Y]$ is a supermartingale, then the probability the maximum of $Y$ is greater than or equal to a positive constant $a$ is less than or equal to $1/(1+a).$ The proof makes use of the semimartingale calculus and is inspired by dynamic programming.
In this note besides two abstra
In this note, we present a version of Hoeffdings inequality in a continuous-time setting, where the data stream comes from a uniformly ergodic diffusion process. Similar to the well-studied case of Hoeffdings inequality for discrete-time uniformly er
Consider a parabolic stochastic PDE of the form $partial_t u=frac{1}{2}Delta u + sigma(u)eta$, where $u=u(t,,x)$ for $tge0$ and $xinmathbb{R}^d$, $sigma:mathbb{R}tomathbb{R}$ is Lipschitz continuous and non random, and $eta$ is a centered Gaussian no
As an extension of a central limit theorem established by Svante Janson, we prove a Berry-Esseen inequality for a sum of independent and identically distributed random variables conditioned by a sum of independent and identically distributed integer-valued random variables.
An easy consequence of Kantorovich-Rubinstein duality is the following: if $f:[0,1]^d rightarrow infty$ is Lipschitz and $left{x_1, dots, x_N right} subset [0,1]^d$, then $$ left| int_{[0,1]^d} f(x) dx - frac{1}{N} sum_{k=1}^{N}{f(x_k)} right| leq le