ﻻ يوجد ملخص باللغة العربية
The phase diagram of the quantum spin-1/2 antiferromagnetic $J^{,}_{1}$-$J^{,}_{2}$ XXZ chain was obtained by Haldane using bosonization techniques. It supports three distinct phases for $0leq J^{,}_{2}/J^{,}_{1}<1/2$, i.e., a gapless algebraic spin liquid phase, a gapped long-range ordered Neel phase, and a gapped long-range ordered dimer phase. Even though the Neel and dimer phases are not related hierarchically by a pattern of symmetry breaking, it was shown that they meet along a line of quantum critical points with a U(1) symmetry and central charge $c=1$. Here, we extend the analysis made by Haldane on the quantum spin-1/2 antiferromagnetic $J^{,}_{1}$-$J^{,}_{2}$ XYZ chain using both bosonization and numerical techniques. We show that there are three Neel phases and the dimer phase that are separated from each other by six planes of phase boundaries realizing U(1) criticality when $0leq J^{,}_{2}/J^{,}_{1}<1/2$. We also show that each long-range ordered phase harbors topological point defects (domain walls) that are dual to those across the phase boundary in that a defect in one ordered phase locally binds the other type of order around its core. By using the bosonization approach, we identify the critical theory that describes simultaneous proliferation of these dual point defects, and show that it supports an emergent U(1) symmetry that originates from the discrete symmetries of the XYZ model. To confirm this numerically, we perform DMRG calculation and show that the critical theory is characterized by the central charge $c=1$ with critical exponents that are consistent with those obtained from the bosonization approach. Furthermore, we generalize the field theoretic description of direct continuous phase transition to higher dimensions, especially in $d=3$, by using a non-linear sigma model (NLSM) with a topological term.
We present the critical theory of a number of zero temperature phase transitions of quantum antiferromagnets and interacting boson systems in two dimensions. The most important example is the transition of the S = 1/2 square lattice antiferromagnet b
In this paper, we study quantum phase transitions and magnetic properties of a one-dimensional spin-1/2 Gamma model, which describes the off-diagonal exchange interactions between edge-shared octahedra with strong spin-orbit couplings along the sawto
We study quantum phases and phase transitions in a one-dimensional interacting fermion system with a Lieb-Schultz-Mattis (LSM) type anomaly. Specifically, the inversion symmetry enforces any symmetry-preserving gapped ground state of the system to be
Based on tensor network simulations, we discuss the emergence of dynamical quantum phase transitions (DQPTs) in a half-filled one-dimensional lattice described by the extended Fermi-Hubbard model. Considering different initial states, namely noninter
This paper presents an introduction to phase transitions and critical phenomena on the one hand, and nonequilibrium patterns on the other, using the Ginzburg-Landau theory as a unified language. In the first part, mean-field theory is presented, for