ترغب بنشر مسار تعليمي؟ اضغط هنا

Lifshitz phase transitions in one-dimensional Gamma model

158   0   0.0 ( 0 )
 نشر من قبل Wen-Long You Dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study quantum phase transitions and magnetic properties of a one-dimensional spin-1/2 Gamma model, which describes the off-diagonal exchange interactions between edge-shared octahedra with strong spin-orbit couplings along the sawtooth chain. The competing exchange interactions between the nearest neighbors and the second neighbors stabilize semimetallic ground state in terms of spinless fermions, and give rise to a rich phase diagram, which consists of three gapless phases. We find distinct phases are characterized by the number of Weyl nodes in the momentum space, and such changes in the topology of the Fermi surface without symmetry breaking produce a variety of Lifshitz transitions, in which the Weyl nodes situating at $k=pi$ interchange from type I to type II. A coexistence of type-I and type-II Weyl nodes is found in phase II. The information measures including concurrence, entanglement entropy and relative entropy can effectively signal the second-order transitions. The results indicate that the Gamma model can act as an exactly solvable model to describe Lifshitz phase transitions in correlated electron systems.



قيم البحث

اقرأ أيضاً

Based on tensor network simulations, we discuss the emergence of dynamical quantum phase transitions (DQPTs) in a half-filled one-dimensional lattice described by the extended Fermi-Hubbard model. Considering different initial states, namely noninter acting, metallic, insulating spin and charge density waves, we identify several types of sudden interaction quenches which lead to dynamical criticality. In different scenarios, clear connections between DQPTs and particular properties of the mean double occupation or charge imbalance can be established. Dynamical transitions resulting solely from high-frequency time-periodic modulation are also found, which are well described by a Floquet effective Hamiltonian. State-of-the-art cold-atom quantum simulators constitute ideal platforms to implement several reported DQPTs experimentally.
208 - Ke-Wei Sun , Yu-Yu Zhang , 2009
Quantum phase transition in the one-dimensional period-two and uniform quantum compass model are studied by using the pseudo-spin transformation method and the trace map method. The exact solutions are presented, the fidelity, the nearest-neighbor ps eudo-spin entanglement, spin and pseudo-spin correlation functions are then calculated. At the critical point, the fidelity and its susceptibility change substantially, the gap of pseudo-spin concurrence is observed, which scales as $1/N$ (N is system size). The spin correlation functions show smooth behavior around the critical point. In the period-two chain, the pseudo-spin correlation functions exhibit a oscillating behavior, which is absent in the unform chain. The divergent correlation length at the critical point is demonstrated in the general trend for both cases.
The last decade has witnessed an impressive progress in the theoretical understanding of transport properties of clean, one-dimensional quantum lattice systems. Many physically relevant models in one dimension are Bethe-ansatz integrable, including t he anisotropic spin-1/2 Heisenberg (also called spin-1/2 XXZ chain) and the Fermi-Hubbard model. Nevertheless, practical computations of, for instance, correlation functions and transport coefficients pose hard problems from both the conceptual and technical point of view. Only due to recent progress in the theory of integrable systems on the one hand and due to the development of numerical methods on the other hand has it become possible to compute their finite temperature and nonequilibrium transport properties quantitatively. Most importantly, due to the discovery of a novel class of quasilocal conserved quantities, there is now a qualitative understanding of the origin of ballistic finite-temperature transport, and even diffusive or super-diffusive subleading corrections, in integrable lattice models. We shall review the current understanding of transport in one-dimensional lattice models, in particular, in the paradigmatic example of the spin-1/2 XXZ and Fermi-Hubbard models, and we elaborate on state-of-the-art theoretical methods, including both analytical and computational approaches. Among other novel techniques, we discuss matrix-product-states based simulation methods, dynamical typicality, and, in particular, generalized hydrodynamics. We will discuss the close and fruitful connection between theoretical models and recent experiments, with examples from both the realm of quantum magnets and ultracold quantum gases in optical lattices.
We address some open questions regarding the phase diagram of the one-dimensional Hubbard model with asymmetric hopping coefficients and balanced species. In the attractive regime we present a numerical study of the passage from on-site pairing domin ant correlations at small asymmetries to charge-density waves in the region with markedly different hopping coefficients. In the repulsive regime we exploit two analytical treatments in the strong- and weak-coupling regimes in order to locate the onset of phase separation at small and large asymmetries respectively.
We study the real-time and real-space dynamics of charge in the one-dimensional Hubbard model in the limit of high temperatures. To this end, we prepare pure initial states with sharply peaked density profiles and calculate the time evolution of thes e nonequilibrium states, by using numerical forward-propagation approaches to chains as long as 20 sites. For a class of typical states, we find excellent agreement with linear-response theory and unveil the existence of remarkably clean charge diffusion in the regime of strong particle-particle interactions. Moreover, we demonstrate that this diffusive behavior does not depend on certain details of our initial conditions, i.e., it occurs for five different realizations with random and nonrandom internal degrees of freedom, single and double occupation of the central site, and displacement of spin-up and spin-down particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا