ﻻ يوجد ملخص باللغة العربية
We study quantum phases and phase transitions in a one-dimensional interacting fermion system with a Lieb-Schultz-Mattis (LSM) type anomaly. Specifically, the inversion symmetry enforces any symmetry-preserving gapped ground state of the system to be a Kitaev chain, following a Lieb-Schultz-Mattis type theorem that we prove. Alternatively, via the Jordan-Wigner transformation, this system describes a spin system whose gapped ground states must break either the inversion or the Ising symmetry associated with fermion parity. We obtain a phase diagram using analytical methods and variational matrix product state simulations, and study the critical behaviors of the quantum phase transitions therein using entanglement entropy, energy variance and finite size scaling of order parameters. In particular, we observe continuous phase transitions between different ordered phases that are beyond the Ginzburg-Landau-Wilson paradigm, in analogy to the deconfined quantum critical points in two spatial dimensions. We show this type of 1D deconfined quantum critical point is described by the Tomonaga-Luttinger liquid theory, and extract the Luttinger parameter and critical exponents. We also identify a gapless phase between two ordered phases, which cannot be described by a U(1) Luttinger liquid.
The Lieb-Schultz-Mattis (LSM) theorem states that a spin system with translation and spin rotation symmetry and half-integer spin per unit cell does not admit a gapped symmetric ground state lacking fractionalized excitations. That is, the ground sta
The Lieb-Schultz-Mattis (LSM) theorem and its higher-dimensional generalizations by Oshikawa and Hastings establish that a translation-invariant lattice model of spin-$1/2$s can not have a non-degenerate ground state preserving both spin and translat
We propose and prove a family of generalized Lieb-Schultz-Mattis (LSM) theorems for symmetry protected topological (SPT) phases on boson/spin models in any dimensions. The conventional LSM theorem, applicable to e.g. any translation invariant system
We develop a general operator algebraic method which focuses on projective representations of symmetry group for proving Lieb-Schultz-Mattis type theorems, i.e., no-go theorems that rule out the existence of a unique gapped ground state (or, more gen
We present a mixed spin-(1/2, 5/2) chain composed of a charge-transfer salt (4-Br-$o$-MePy-V)FeCl$_4$. We observe the entire magnetization curve up to saturation, which exhibits a clear Lieb-Mattis magnetization plateau and subsequent quantum phase t