ﻻ يوجد ملخص باللغة العربية
This paper presents end-to-end learning from spectrum data - an umbrella term for new sophisticated wireless signal identification approaches in spectrum monitoring applications based on deep neural networks. End-to-end learning allows to (i) automatically learn features directly from simple wireless signal representations, without requiring design of hand-crafted expert features like higher order cyclic moments, and (ii) train wireless signal classifiers in one end-to-end step which eliminates the need for complex multi-stage machine learning processing pipelines. The purpose of this article is to present the conceptual framework of end-to-end learning for spectrum monitoring and systematically introduce a generic methodology to easily design and implement wireless signal classifiers. Furthermore, we investigate the importance of the choice of wireless data representation to various spectrum monitoring tasks. In particular, two case studies are elaborated (i) modulation recognition and (ii) wireless technology interference detection. For each case study three convolutional neural networks are evaluated for the following wireless signal representations: temporal IQ data, the amplitude/phase representation and the frequency domain representation. From our analysis we prove that the wireless data representation impacts the accuracy depending on the specifics and similarities of the wireless signals that need to be differentiated, with different data representations resulting in accuracy variations of up to 29%. Experimental results show that using the amplitude/phase representation for recognizing modulation formats can lead to performance improvements up to 2% and 12% for medium to high SNR compared to IQ and frequency domain data, respectively. For the task of detecting interference, frequency domain representation outperformed amplitude/phase and IQ data representation up to 20%.
This paper looks into the technology classification problem for a distributed wireless spectrum sensing network. First, a new data-driven model for Automatic Modulation Classification (AMC) based on long short term memory (LSTM) is proposed. The mode
We design a dispatch system to improve the peak service quality of video on demand (VOD). Our system predicts the hot videos during the peak hours of the next day based on the historical requests, and dispatches to the content delivery networks (CDNs
An accurate seizure prediction system enables early warnings before seizure onset of epileptic patients. It is extremely important for drug-refractory patients. Conventional seizure prediction works usually rely on features extracted from Electroence
Many fields are now snowed under with an avalanche of data, which raises considerable challenges for computer scientists. Meanwhile, robotics (among other fields) can often only use a few dozen data points because acquiring them involves a process th
This paper describes the principles and implementation results of reinforcement learning algorithms on IoT devices for radio collision mitigation in ISM unlicensed bands. Learning is here used to improve both the IoT network capability to support a l