ترغب بنشر مسار تعليمي؟ اضغط هنا

The Type II-Plateau Supernova 2017eaw in NGC 6946 and Its Red Supergiant Progenitor

242   0   0.0 ( 0 )
 نشر من قبل Schuyler D. Van Dyk
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present extensive optical photometric and spectroscopic observations, from 4 to 482 days after explosion, of the Type II-plateau (II-P) supernova (SN) 2017eaw in NGC 6946. SN 2017eaw is a normal SN II-P intermediate in properties between, for example, SN 1999em and SN 2012aw and the more luminous SN 2004et, also in NGC 6946. We have determined that the extinction to SN 2017eaw is primarily due to the Galactic foreground and that the SN site metallicity is likely subsolar. We have also independently confirmed a tip-of-the-red-giant-branch (TRGB) distance to NGC 6946 of 7.73+/-0.78 Mpc. The distances to the SN that we have also estimated via both the standardized candle method and expanding photosphere method corroborate the TRGB distance. We confirm the SN progenitor identity in pre-explosion archival Hubble Space Telescope (HST) and Spitzer Space Telescope images, via imaging of the SN through our HST Target of Opportunity program. Detailed modeling of the progenitors spectral energy distribution indicates that the star was a dusty, luminous red supergiant consistent with an initial mass of ~15 Msuns.



قيم البحث

اقرأ أيضاً

We present the discovery of a red supergiant star that exploded as supernova 2003gd in the nearby spiral galaxy M74. The Hubble Space Telescope (HST) and the Gemini Telescope imaged this galaxy 6 to 9 months before the supernova explosion and subsequ ent HST images confirm the positional coincidence of the supernova with a single,resolved star which is an 8 +4/-2 solar mass red supergiant. This confirms both stellar evolution models and supernova theories which predict that type II-Plateau supernovae have cool red supergiants as their immediate progenitor stars.
We analyze two pre-supernova (SN) and three post-SN high-resolution images of the site of the Type II-Plateau supernova SN 2006my in an effort to either detect the progenitor star or to constrain its properties. Following image registration, we find that an isolated stellar object is not detected at the location of SN 2006my in either of the two pre-SN images. In the first, an I-band image obtained with the Wide-Field and Planetary Camera 2 on board the Hubble Space Telescope, the offset between the SN 2006my location and a detected source (Source 1) is too large: > 0.08, which corresponds to a confidence level of non-association of 96% from our most liberal estimates of the transformation and measurement uncertainties. In the second, a similarly obtained V-band image, a source is detected (Source 2) that has overlap with the SN 2006my location but is definitively an extended object. Through artificial star tests carried out on the precise location of SN 2006my in the images, we derive a 3-sigma upper bound on the luminosity of a red supergiant that could have remained undetected in our pre-SN images of log L/L_Sun = 5.10, which translates to an upper bound on such a stars initial mass of 15 M_Sun from the STARS stellar evolutionary models. Although considered unlikely, we can not rule out the possibility that part of the light comprising Source 1, which exhibits a slight extension relative to other point sources in the image, or part of the light contributing to the extended Source 2, may be due to the progenitor of SN 2006my. Only additional, high-resolution observations of the site taken after SN 2006my has faded beyond detection can confirm or reject these possibilities.
Broadband $BVRI$ light curves of SN 2017eaw in NGC 6946 reveal the classic elements of a Type II-P supernova. The observations were begun on 16 May 2017 (UT), approximately 1 day after the discovery was announced, and the photometric monitoring was c arried out over a period of nearly 600 days. The light curves show a well-defined plateau and an exponential tail which curves slightly at later times. An approximation to the bolometric light curve is derived and used to estimate the amount of $^{56}$Ni created in the explosion; from various approaches described in the literature, we obtain $M$($^{56}{rm Ni}$) = 0.115 ($-$0.022,+0.027)$M_{odot}$. We also estimate that 43% of the bolometric flux emitted during the plateau phase is actually produced by the $^{56}$Ni chain. Other derived parameters support the idea that the progenitor was a red supergiant.
We have obtained early-time photometry and spectroscopy of Supernova (SN) 2013df in NGC 4414. The SN is clearly of Type IIb, with notable similarities to SN 1993J. From its luminosity at secondary maximum light, it appears that less $^{56}$Ni ($lesss im 0.06 M_{odot}$) was synthesized in the SN 2013df explosion than was the case for the SNe IIb 1993J, 2008ax, and 2011dh. Based on a comparison of the light curves, the SN 2013df progenitor must have been more extended in radius prior to explosion than the progenitor of SN 1993J. The total extinction for SN 2013df is estimated to be $A_V=0.30$ mag. The metallicity at the SN location is likely to be solar. We have conducted Hubble Space Telescope (HST) Target of Opportunity observations of the SN with the Wide Field Camera 3, and from a precise comparison of these new observations to archival HST observations of the host galaxy obtained 14 years prior to explosion, we have identified the progenitor of SN 2013df to be a yellow supergiant, somewhat hotter than a red supergiant progenitor for a normal Type II-Plateau SN. From its observed spectral energy distribution, assuming that the light is dominated by one star, the progenitor had effective temperature $T_{rm eff} = 4250 pm 100$ K and a bolometric luminosity $L_{rm bol}=10^{4.94 pm 0.06} L_{odot}$. This leads to an effective radius $R_{rm eff} = 545 pm 65 R_{odot}$. The star likely had an initial mass in the range of 13 to 17 $M_{odot}$; however, if it was a member of an interacting binary system, detailed modeling of the system is required to estimate this mass more accurately. The progenitor star of SN 2013df appears to have been relatively similar to the progenitor of SN 1993J.
195 - M. A. Hendry 2006
We present a monitoring study of SN 2004A and probable discovery of a progenitor star in pre-explosion HST images. The photometric and spectroscopic monitoring of SN 2004A show that it was a normal Type II-P which was discovered in NGC 6207 about two weeks after explosion. We compare SN 2004A to the similar Type II-P SN 1999em and estimate an explosion epoch of 2004 January 6. We also calculate three new distances to NGC 6207 of 21.0 +/-4.3, 21.4 +/-3.5 and 25.1 +/-1.7Mpc. The former was calculated using the Standard Candle Method (SCM) for SNe II-P, and the latter two from the Brightest Supergiants Method (BSM). We combine these three distances with existing kinematic distances, to derive a mean value of 20.3 +/-3.4Mpc. Using this distance we estimate that the ejected nickel mass in the explosion is 0.046(+0.031,-0.017) Msolar. The progenitor of SN 2004A is identified in pre-explosion WFPC2 F814W images with a magnitude of mF814W = 24.3 +/-0.3, but is below the detection limit of the F606W images. We show that this was likely a red supergiant (RSG) with a mass of 9(+3,-2) Msolar. The object is detected at 4.7 sigma above the background noise. Even if this detection is spurious, the 5 sigma upper limit would give a robust upper mass limit of 12 Msolar for a RSG progenitor. These initial masses are very similar to those of two previously identified RSG progenitors of the Type II-P SNe 2004gd 8(+4,-2) Msolar and 2005cs 9(+3,-2) Msolar).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا