ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of a red supergiant progenitor star of a type II-plateau supernova

67   0   0.0 ( 0 )
 نشر من قبل Stephen Smartt
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the discovery of a red supergiant star that exploded as supernova 2003gd in the nearby spiral galaxy M74. The Hubble Space Telescope (HST) and the Gemini Telescope imaged this galaxy 6 to 9 months before the supernova explosion and subsequent HST images confirm the positional coincidence of the supernova with a single,resolved star which is an 8 +4/-2 solar mass red supergiant. This confirms both stellar evolution models and supernova theories which predict that type II-Plateau supernovae have cool red supergiants as their immediate progenitor stars.



قيم البحث

اقرأ أيضاً

We present extensive optical photometric and spectroscopic observations, from 4 to 482 days after explosion, of the Type II-plateau (II-P) supernova (SN) 2017eaw in NGC 6946. SN 2017eaw is a normal SN II-P intermediate in properties between, for exam ple, SN 1999em and SN 2012aw and the more luminous SN 2004et, also in NGC 6946. We have determined that the extinction to SN 2017eaw is primarily due to the Galactic foreground and that the SN site metallicity is likely subsolar. We have also independently confirmed a tip-of-the-red-giant-branch (TRGB) distance to NGC 6946 of 7.73+/-0.78 Mpc. The distances to the SN that we have also estimated via both the standardized candle method and expanding photosphere method corroborate the TRGB distance. We confirm the SN progenitor identity in pre-explosion archival Hubble Space Telescope (HST) and Spitzer Space Telescope images, via imaging of the SN through our HST Target of Opportunity program. Detailed modeling of the progenitors spectral energy distribution indicates that the star was a dusty, luminous red supergiant consistent with an initial mass of ~15 Msuns.
We analyze two pre-supernova (SN) and three post-SN high-resolution images of the site of the Type II-Plateau supernova SN 2006my in an effort to either detect the progenitor star or to constrain its properties. Following image registration, we find that an isolated stellar object is not detected at the location of SN 2006my in either of the two pre-SN images. In the first, an I-band image obtained with the Wide-Field and Planetary Camera 2 on board the Hubble Space Telescope, the offset between the SN 2006my location and a detected source (Source 1) is too large: > 0.08, which corresponds to a confidence level of non-association of 96% from our most liberal estimates of the transformation and measurement uncertainties. In the second, a similarly obtained V-band image, a source is detected (Source 2) that has overlap with the SN 2006my location but is definitively an extended object. Through artificial star tests carried out on the precise location of SN 2006my in the images, we derive a 3-sigma upper bound on the luminosity of a red supergiant that could have remained undetected in our pre-SN images of log L/L_Sun = 5.10, which translates to an upper bound on such a stars initial mass of 15 M_Sun from the STARS stellar evolutionary models. Although considered unlikely, we can not rule out the possibility that part of the light comprising Source 1, which exhibits a slight extension relative to other point sources in the image, or part of the light contributing to the extended Source 2, may be due to the progenitor of SN 2006my. Only additional, high-resolution observations of the site taken after SN 2006my has faded beyond detection can confirm or reject these possibilities.
We report the identification of a source coincident with the position of the nearby type II-P supernova (SN) 2008bk in high quality optical and near-infrared pre-explosion images from the ESO Very Large Telescope (VLT). The SN position in the optical and near-infrared pre-explosion images is identified to within about +-70 and +-40 mas, respectively, using post-explosion Ks-band images obtained with the NAOS CONICA adaptive optics system on the VLT. The pre-explosion source detected in four different bands is precisely coincident with SN 2008bk and is consistent with being dominated by a single point source. We determine the nature of the point source using the STARS stellar evolutionary models and find that its colours and luminosity are consistent with the source being a red supergiant progenitor of SN 2008bk with an initial mass of 8.5 +- 1.0 Msun.
195 - M. A. Hendry 2006
We present a monitoring study of SN 2004A and probable discovery of a progenitor star in pre-explosion HST images. The photometric and spectroscopic monitoring of SN 2004A show that it was a normal Type II-P which was discovered in NGC 6207 about two weeks after explosion. We compare SN 2004A to the similar Type II-P SN 1999em and estimate an explosion epoch of 2004 January 6. We also calculate three new distances to NGC 6207 of 21.0 +/-4.3, 21.4 +/-3.5 and 25.1 +/-1.7Mpc. The former was calculated using the Standard Candle Method (SCM) for SNe II-P, and the latter two from the Brightest Supergiants Method (BSM). We combine these three distances with existing kinematic distances, to derive a mean value of 20.3 +/-3.4Mpc. Using this distance we estimate that the ejected nickel mass in the explosion is 0.046(+0.031,-0.017) Msolar. The progenitor of SN 2004A is identified in pre-explosion WFPC2 F814W images with a magnitude of mF814W = 24.3 +/-0.3, but is below the detection limit of the F606W images. We show that this was likely a red supergiant (RSG) with a mass of 9(+3,-2) Msolar. The object is detected at 4.7 sigma above the background noise. Even if this detection is spurious, the 5 sigma upper limit would give a robust upper mass limit of 12 Msolar for a RSG progenitor. These initial masses are very similar to those of two previously identified RSG progenitors of the Type II-P SNe 2004gd 8(+4,-2) Msolar and 2005cs 9(+3,-2) Msolar).
Cassiopeia A (Cas A) is one of the best studied young Galactic supernova remnants. While providing a rare opportunity to study in detail the remnant of a Type IIb supernova, questions remain regarding the nature of its progenitor, its mass-loss histo ry, and its pre-SN evolution. Here we present an optical investigation of the circumstellar environment around Cas A and find clumpy and filamentary Halpha emission nebulosities concentrated 10-15 pc (10-15 arcminutes) to the north and east. First reported by Minkowski as a faint H II region, these nebulosities exhibit distinct morphological and spectroscopic properties relative to the surrounding diffuse emissions. Compared to neighboring H II regions, these nebulae show stronger [N II] 6548, 6583 A and [S II] 6716, 6731 A emissions relative to Halpha. We show that Cas As highest-velocity ejecta knots are interacting with some of the closest projected emission nebulae, thus providing strong evidence that these nebulae lie at the same distance as the remnant. We interpret these surrounding nebulosities to be the remains of the progenitors red supergiant wind which accumulated against the southern edge of a large extended H II region located north of Cas A. Our findings are consistent with the view that Cas As progenitor underwent considerable mass-loss, first from a fast main-sequence wind, then from a slower, clumpy red supergiant wind, and finally from a brief high-velocity wind, like that from a yellow supergiant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا