ﻻ يوجد ملخص باللغة العربية
Broadband $BVRI$ light curves of SN 2017eaw in NGC 6946 reveal the classic elements of a Type II-P supernova. The observations were begun on 16 May 2017 (UT), approximately 1 day after the discovery was announced, and the photometric monitoring was carried out over a period of nearly 600 days. The light curves show a well-defined plateau and an exponential tail which curves slightly at later times. An approximation to the bolometric light curve is derived and used to estimate the amount of $^{56}$Ni created in the explosion; from various approaches described in the literature, we obtain $M$($^{56}{rm Ni}$) = 0.115 ($-$0.022,+0.027)$M_{odot}$. We also estimate that 43% of the bolometric flux emitted during the plateau phase is actually produced by the $^{56}$Ni chain. Other derived parameters support the idea that the progenitor was a red supergiant.
We present extensive optical photometric and spectroscopic observations, from 4 to 482 days after explosion, of the Type II-plateau (II-P) supernova (SN) 2017eaw in NGC 6946. SN 2017eaw is a normal SN II-P intermediate in properties between, for exam
We present our findings based on pre- and post-explosion data of the type II-Plateau SN 2018aoq that exploded in NGC 4151. As distance estimates to NGC 4151 vary by an order of magnitude, we utilised the well-known correlation between ejecta velocity
SN 2017eaw, the tenth supernova observed in NGC 6946, was a normal Type II-P supernova with an estimated 11 - 13 Msun supergiant progenitor. Here we present nebular phase spectra of SN 2017eaw at +545 and +900 days post-max, extending approximately 5
We present extensive optical ($UBVRI$, $griz$, and open CCD) and near-infrared ($ZYJH$) photometry for the very nearby Type IIP SN ~2013ej extending from +1 to +461 days after shock breakout, estimated to be MJD $56496.9pm0.3$. Substantial time serie
We constrained the progenitor masses for 169 supernova remnants, 8 historically observed supernovae, and the black hole formation candidate in NGC 6946, finding that they are consistent with originating from a standard initial mass function. Addition