ترغب بنشر مسار تعليمي؟ اضغط هنا

An Upper Mass Limit on a Red Supergiant Progenitor for the Type II-Plateau Supernova SN 2006my

127   0   0.0 ( 0 )
 نشر من قبل Douglas C. Leonard
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze two pre-supernova (SN) and three post-SN high-resolution images of the site of the Type II-Plateau supernova SN 2006my in an effort to either detect the progenitor star or to constrain its properties. Following image registration, we find that an isolated stellar object is not detected at the location of SN 2006my in either of the two pre-SN images. In the first, an I-band image obtained with the Wide-Field and Planetary Camera 2 on board the Hubble Space Telescope, the offset between the SN 2006my location and a detected source (Source 1) is too large: > 0.08, which corresponds to a confidence level of non-association of 96% from our most liberal estimates of the transformation and measurement uncertainties. In the second, a similarly obtained V-band image, a source is detected (Source 2) that has overlap with the SN 2006my location but is definitively an extended object. Through artificial star tests carried out on the precise location of SN 2006my in the images, we derive a 3-sigma upper bound on the luminosity of a red supergiant that could have remained undetected in our pre-SN images of log L/L_Sun = 5.10, which translates to an upper bound on such a stars initial mass of 15 M_Sun from the STARS stellar evolutionary models. Although considered unlikely, we can not rule out the possibility that part of the light comprising Source 1, which exhibits a slight extension relative to other point sources in the image, or part of the light contributing to the extended Source 2, may be due to the progenitor of SN 2006my. Only additional, high-resolution observations of the site taken after SN 2006my has faded beyond detection can confirm or reject these possibilities.



قيم البحث

اقرأ أيضاً

We present the discovery of a red supergiant star that exploded as supernova 2003gd in the nearby spiral galaxy M74. The Hubble Space Telescope (HST) and the Gemini Telescope imaged this galaxy 6 to 9 months before the supernova explosion and subsequ ent HST images confirm the positional coincidence of the supernova with a single,resolved star which is an 8 +4/-2 solar mass red supergiant. This confirms both stellar evolution models and supernova theories which predict that type II-Plateau supernovae have cool red supergiants as their immediate progenitor stars.
195 - M. A. Hendry 2006
We present a monitoring study of SN 2004A and probable discovery of a progenitor star in pre-explosion HST images. The photometric and spectroscopic monitoring of SN 2004A show that it was a normal Type II-P which was discovered in NGC 6207 about two weeks after explosion. We compare SN 2004A to the similar Type II-P SN 1999em and estimate an explosion epoch of 2004 January 6. We also calculate three new distances to NGC 6207 of 21.0 +/-4.3, 21.4 +/-3.5 and 25.1 +/-1.7Mpc. The former was calculated using the Standard Candle Method (SCM) for SNe II-P, and the latter two from the Brightest Supergiants Method (BSM). We combine these three distances with existing kinematic distances, to derive a mean value of 20.3 +/-3.4Mpc. Using this distance we estimate that the ejected nickel mass in the explosion is 0.046(+0.031,-0.017) Msolar. The progenitor of SN 2004A is identified in pre-explosion WFPC2 F814W images with a magnitude of mF814W = 24.3 +/-0.3, but is below the detection limit of the F606W images. We show that this was likely a red supergiant (RSG) with a mass of 9(+3,-2) Msolar. The object is detected at 4.7 sigma above the background noise. Even if this detection is spurious, the 5 sigma upper limit would give a robust upper mass limit of 12 Msolar for a RSG progenitor. These initial masses are very similar to those of two previously identified RSG progenitors of the Type II-P SNe 2004gd 8(+4,-2) Msolar and 2005cs 9(+3,-2) Msolar).
We present extensive optical photometric and spectroscopic observations, from 4 to 482 days after explosion, of the Type II-plateau (II-P) supernova (SN) 2017eaw in NGC 6946. SN 2017eaw is a normal SN II-P intermediate in properties between, for exam ple, SN 1999em and SN 2012aw and the more luminous SN 2004et, also in NGC 6946. We have determined that the extinction to SN 2017eaw is primarily due to the Galactic foreground and that the SN site metallicity is likely subsolar. We have also independently confirmed a tip-of-the-red-giant-branch (TRGB) distance to NGC 6946 of 7.73+/-0.78 Mpc. The distances to the SN that we have also estimated via both the standardized candle method and expanding photosphere method corroborate the TRGB distance. We confirm the SN progenitor identity in pre-explosion archival Hubble Space Telescope (HST) and Spitzer Space Telescope images, via imaging of the SN through our HST Target of Opportunity program. Detailed modeling of the progenitors spectral energy distribution indicates that the star was a dusty, luminous red supergiant consistent with an initial mass of ~15 Msuns.
127 - Ben Davies , Emma R. Beasor 2020
By comparing the properties of Red Supergiant (RSG) supernova progenitors to those of field RSGs, it has been claimed that there is an absence of progenitors with luminosities $L$ above $log(L/L_odot) > 5.2$. This is in tension with the empirical upp er luminosity limit of RSGs at $log(L/L_odot) = 5.5$, a result known as the `Red Supergiant Problem. This has been interpreted as evidence for an upper mass threshold for the formation of black-holes. In this paper, we compare the observed luminosities of RSG SN progenitors with the observed RSG $L$-distribution in the Magellanic Clouds. Our results indicate that the absence of bright SN II-P/L progenitors in the current sample can be explained at least in part by the steepness of the $L$-distribution and a small sample size, and that the statistical significance of the Red Supergiant Problem is between 1-2$sigma$ . Secondly, we model the luminosity distribution of II-P/L progenitors as a simple power-law with an upper and lower cutoff, and find an upper luminosity limit of $log(L_{rm hi}/L_odot) = 5.20^{+0.17}_{-0.11}$ (68% confidence), though this increases to $sim$5.3 if one fixes the power-law slope to be that expected from theoretical arguments. Again, the results point to the significance of the RSG Problem being within $sim 2 sigma$. Under the assumption that all progenitors are the result of single-star evolution, this corresponds to an upper mass limit for the parent distribution of $M_{rm hi} = 19.2{rm M_odot}$, $pm1.3 {rm M_odot (systematic)}$, $^{+4.5}_{-2.3} {rm M_odot}$ (random) (68% confidence limits).
We present optical and near-infrared photometry and spectroscopy of SN 2009ib, a Type II-P supernova in NGC 1559. This object has moderate brightness, similar to those of the intermediate-luminosity SNe 2008in and 2009N. Its plateau phase is unusuall y long, lasting for about 130 days after explosion. The spectra are similar to those of the subluminous SN 2002gd, with moderate expansion velocities. We estimate the $^{56}$Ni mass produced as $0.046 pm 0.015,{rm M}_{sun}$. We determine the distance to SN 2009ib using both the expanding photosphere method (EPM) and the standard candle method. We also apply EPM to SN 1986L, a type II-P SN that exploded in the same galaxy. Combining the results of different methods, we conclude the distance to NGC 1559 as $D=19.8 pm 3.0$ Mpc. We examine archival, pre-explosion images of the field taken with the Hubble Space Telescope, and find a faint source at the position of the SN, which has a yellow colour ($(V-I)_0 = 0.85$ mag). Assuming it is a single star, we estimate its initial mass as $M_{rm ZAMS}=20,{rm M}_{sun}$. We also examine the possibility, that instead of the yellow source the progenitor of SN 2009ib is a red supergiant star too faint to be detected. In this case we estimate the upper limit for the initial zero-age main sequence mass of the progenitor to be $sim 14-17,{rm M}_{sun}$. In addition, we infer the physical properties of the progenitor at the explosion via hydrodynamical modelling of the observables, and estimate the total energy as $sim 0.55 times 10^{51}$~erg, the pre-explosion radius as $sim 400,{rm R}_{sun}$, and the ejected envelope mass as $sim 15,{rm M}_{sun}$, which implies that the mass of the progenitor before explosion was $sim 16.5-17,{rm M}_{sun}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا