ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Advantage in Postselected Metrology

526   0   0.0 ( 0 )
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that postselection offers a nonclassical advantage in metrology. In every parameter-estimation experiment, the final measurement or the postprocessing incurs some cost. Postselection can improve the rate of Fisher information (the average information learned about an unknown parameter from an experimental trial) to cost. This improvement, we show, stems from the negativity of a quasiprobability distribution, a quantum extension of a probability distribution. In a classical theory, in which all observables commute, our quasiprobability distribution can be expressed as real and nonnegative. In a quantum-mechanically noncommuting theory, nonclassicality manifests in negative or nonreal quasiprobabilities. The distributions nonclassically negative values enable postselected experiments to outperform even postselection-free experiments whose input states and final measurements are optimized: Postselected quantum experiments can yield anomalously large information-cost rates. We prove that this advantage is genuinely nonclassical: no classically commuting theory can describe any quantum experiment that delivers an anomalously large Fisher information. Finally, we outline a preparation-and-postselection procedure that can yield an arbitrarily large Fisher information. Our results establish the nonclassicality of a metrological advantage, leveraging our quasiprobability distribution as a mathematical tool.

قيم البحث

اقرأ أيضاً

We consider the estimation of a Hamiltonian parameter of a set of highly photosensitive samples, which are damaged after a few photons $N_{rm abs}$ are absorbed, for a total time $T$. The samples are modelled as a two mode photonic system, where phot ons simultaneously acquire information on the unknown parameter and are absorbed at a fixed rate. We show that arbitrarily intense coherent states can obtain information at a rate that scales at most linearly with $N_{rm abs}$ and $T$, whereas quantum states with finite intensity can overcome this bound. We characterise the quantum advantage as a function of $N_{rm abs}$ and $T$, as well as its robustness to imperfections (non-ideal detectors, finite preparation and measurement rates for quantum photonic states). We discuss an implementation in cavity QED, where Fock states are both prepared and measured by coupling atomic ensembles to the cavities. We show that superradiance, arising due to a collective coupling between the cavities and the atoms, can be exploited for improving the speed and efficiency of the measurement.
Random access codes have provided many examples of quantum advantage in communication, but concern only one kind of information retrieval task. We introduce a related task - the Torpedo Game - and show that it admits greater quantum advantage than th e comparable random access code. Perfect quantum strategies involving prepare-and-measure protocols with experimentally accessible three-level systems emerge via analysis in terms of the discrete Wigner function. The example is leveraged to an operational advantage in a pacifist version of the strategy game Battleship. We pinpoint a characteristic of quantum systems that enables quantum advantage in any bounded-memory information retrieval task. While preparation contextuality has previously been linked to advantages in random access coding we focus here on a different characteristic called sequential contextuality. It is shown not only to be necessary and sufficient for quantum advantage, but also to quantify the degree of advantage. Our perfect qutrit strategy for the Torpedo Game entails the strongest type of inconsistency with non-contextual hidden variables, revealing logical paradoxes with respect to those assumptions.
Quantum metrology research promises approaches to build new sensors that achieve the ultimate level of precision measurement and perform fundamentally better than modern sensors. Practical schemes that tolerate realistic fabrication imperfections and environmental noise are required in order to realise quantum-enhanced sensors and to enable their real-world application. We have demonstrated the key enabling principles of a practical, loss-tolerant approach to photonic quantum metrology designed to harness all multi-photon components in spontaneous parametric downconversion---a method for generating multiple photons that we show requires no further fundamental state engineering for use in practical quantum metrology. We observe a quantum advantage of 28% in precision measurement of optical phase using the four-photon detection component of this scheme, despite 83% system loss. This opens the way to new quantum sensors based on current quantum-optical capabilities.
Conventional strategies of quantum metrology are built upon POVMs, thereby possessing several general features, including the demolition of the state to be measured, the need of performing a number of measurements, and the degradation of performance under decoherence and dissipation. Here, we propose an innovative measurement scheme, called dissipative adiabatic measurements (DAMs), based on which, we further develop an approach to estimation of parameters characterizing dissipative processes. Unlike a POVM, whose outcome is one of the eigenvalues of an observable, a DAM yields the expectation value of the observable as its outcome, without collapsing the state to be measured. By virtue of the very nature of DAMs, our approach is capable of solving the estimation problem in a state-protective fashion with only $M$ measurements, where $M$ is the number of parameters to be estimated. More importantly, contrary to the common wisdom, it embraces decoherence and dissipation as beneficial effects and offers a Heisenberg-like scaling of precision, thus outperforming conventional strategies. Our DAM-based approach is direct, efficient, and expected to be immensely useful in the context of dissipative quantum information processing.
Quantum Metrology is one of the most promising application of quantum technologies. The aim of this research field is the estimation of unknown parameters exploiting quantum resources, whose application can lead to enhanced performances with respect to classical strategies. Several physical quantum systems can be employed to develop quantum sensors, and photonic systems represent ideal probes for a large number of metrological tasks. Here we review the basic concepts behind quantum metrology and then focus on the application of photonic technology for this task, with particular attention to phase estimation. We describe the current state of the art in the field in terms of platforms and quantum resources. Furthermore, we present the research area of multiparameter quantum metrology, where multiple parameters have to be estimated at the same time. We conclude by discussing the current experimental and theoretical challenges, and the open questions towards implementation of photonic quantum sensors with quantum-enhanced performances in the presence of noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا