ترغب بنشر مسار تعليمي؟ اضغط هنا

Black Phosphorus/Palladium Nanohybrid: Unraveling the Nature of P-Pd Interaction and Application in Selective Hydrogenation

247   0   0.0 ( 0 )
 نشر من قبل Stefan Heun
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The burgeoning interest in 2D black phosphorus (bP) contributes to expand its applications in countless fields. In the present study, 2D bP is used as a support for homogeneously dispersed palladium nanoparticles directly grown on it by a wet chemical process. EELS-STEM analysis evidences a strong interaction between palladium and P atoms of bP nanosheets. A quantitative evaluation of this interaction comes from XAS measurements that find out a very short Pd-P distance of 2.26 {AA} proving for the first time the existence of an unprecedented Pd-P coordination bond of covalent nature. Additionally, the average Pd-P coordination number of about 1.7 reveals that bP acts as a polydentate phosphine ligand towards the surface Pd atoms of the nanoparticles, thus preventing their agglomeration and inferring structural stability. These unique properties result in a superior performance in the catalytic hydrogenation of chloronitroarenes to chloroaniline, where a higher chemoselectivity in comparison to other heterogeneous catalyst based on palladium has been observed.



قيم البحث

اقرأ أيضاً

Since its discovery, the environmental instability of exfoliated black phosphorus (2D bP) has emerged as a challenge that hampers its wide application in chemistry, physics, and materials science. Many studies have been carried out to overcome this d rawback. Here we show a relevant enhancement of ambient stability in few-layer bP decorated with nickel nanoparticles as compared to pristine bP. In detail, the behavior of the Ni-functionalized material exposed to ambient conditions in the dark is accurately studied by TEM (Transmission Electron Microscopy), Raman Spectroscopy, and high resolution X-ray Photoemission and Absorption Spectroscopy. These techniques provide a morphological and quantitative insight of the oxidation process taking place at the surface of the bP flakes. In the presence of Ni NPs, the decay time of 2D bP to phosphorus oxides is more than three time slower compared to pristine bP, demonstrating an improved structural stability within twenty months of observation.
Methanol occupies a central role in chemical synthesis and is considered an ideal candidate for cleaner fuel storage and transportation. It can be catalyzed from water and volatile organic compounds such as carbon dioxide, thereby offering an attract ive solution for reducing carbon emissions. However molecular-level experimental observations of the catalytic process are scarce, and most existing catalysts tend to rely on empirically optimized, expensive and complex nano- composite materials. This lack of molecular-level insights has precluded the development of simpler, more cost-effective alternatives. Here we show that graphite immersed in ultrapure water is able to spontaneously catalyze methanol from volatile organic compounds in ambient conditions. Using single-molecule resolution atomic force microscopy (AFM) in liquid, we directly observe the formation and evolution of methanol-water nanostructures at the surface of graphite. These molecularly ordered structures nucleate near catalytically active surface features such as atomic step edges and grow progressively as further methanol is being catalyzed. Complementary nuclear magnetic resonance analysis of the liquid confirms the formation of methanol and quantifies its concentration. We also show that electric fields significantly enhance the catalysis rate, even when as small as that induced by the natural surface potential of the silicon AFM tip. These findings could have a significant impact on the development of organic catalysts and on the function of nanoscale carbon devices.
The S1 (21Ag-) state is an optically dark state of natural and synthetic pi-conjugated materials that can play a critical role in optoelectronic processes such as, energy harvesting, photoprotection and singlet fission. Despite this widespread import ance, direct experimental characterisations of the electronic structure of the S1 (21Ag-) wavefunction have remained scarce and uncertain, although advanced theory predicts it to have a rich multi-excitonic character. Here, studying an archetypal polymer, polydiacetylene, and carotenoids, we experimentally demonstrate that S1 (21Ag-) is a superposition state with strong contributions from spin-entangled pairs of triplet excitons (1(TT)). We further show that optical manipulation of the S1 (21Ag-) wavefunction using triplet absorption transitions allows selective projection of the 1(TT) component into a manifold of spatially separated triplet-pairs with lifetimes enhanced by up to one order of magnitude and whose yield is strongly dependent on the level of inter-chromophore coupling. Our results provide a unified picture of 21Ag-states in pi-conjugated materials and open new routes to exploit their dynamics in singlet fission, photobiology and for the generation of entangled (spin-1) particles for molecular quantum technologies.
Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter we develop a nanosca le continuum model for the growth of Li2O2 crystals in lithium-oxygen batteries with organic electrolytes, based on a theory of electrochemical non-equilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium insertion in phase-separating LiFePO4 nanoparticles, the theory predicts a transition from complex to uniform morphologies of Li2O2 with increasing current. Discrete particle growth at low discharge rates becomes suppressed at high rates, resulting in a film of electronically insulating Li2O2 that limits cell performance. We predict that the transition between these surface growth modes occurs at current densities close to the exchange current density of the cathode reaction, consistent with experimental observations.
123 - Shama , Goutam Sheet , 2020
We report the growth and magneto-transport studies of Pd$_{3}$Bi$_{2}$S$_{2}$ (PBS) thin films synthesized by pulsed laser deposition (PLD) technique. The magneto-transport study on pristine and post annealed films show the presence of more than one type of charge carrier with a carrier concentration in the range $0.6$ - $2.26~times$ 10$^{21}$ cm$^{-3}$ and mobility in the range 0.96 - 1.73 $times$ 10$^{2}$ cm$^{2}$/Vs. At low temperatures a logarithmic increase in conductivity is observed which indicates the presence of weak anti-localization (WAL). The magnetotransport data is analysed within the Hikami-Larkin-Nagaoka (HLN) theory. It is found that temperature dependence of the dephasing length cant be explained only by electron-electron scattering and that electron-phonon scattering also contributes to the phase relaxation mechanism in PBS films.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا