ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical projection and spatial separation of spin entangled triplet-pairs from the S1 (21Ag-) state of pi-conjugated systems

132   0   0.0 ( 0 )
 نشر من قبل Raj Pandya Mr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The S1 (21Ag-) state is an optically dark state of natural and synthetic pi-conjugated materials that can play a critical role in optoelectronic processes such as, energy harvesting, photoprotection and singlet fission. Despite this widespread importance, direct experimental characterisations of the electronic structure of the S1 (21Ag-) wavefunction have remained scarce and uncertain, although advanced theory predicts it to have a rich multi-excitonic character. Here, studying an archetypal polymer, polydiacetylene, and carotenoids, we experimentally demonstrate that S1 (21Ag-) is a superposition state with strong contributions from spin-entangled pairs of triplet excitons (1(TT)). We further show that optical manipulation of the S1 (21Ag-) wavefunction using triplet absorption transitions allows selective projection of the 1(TT) component into a manifold of spatially separated triplet-pairs with lifetimes enhanced by up to one order of magnitude and whose yield is strongly dependent on the level of inter-chromophore coupling. Our results provide a unified picture of 21Ag-states in pi-conjugated materials and open new routes to exploit their dynamics in singlet fission, photobiology and for the generation of entangled (spin-1) particles for molecular quantum technologies.


قيم البحث

اقرأ أيضاً

Dynamical polarization of nuclear spin ensembles is of central importance for magnetic resonance studies, precision sensing and for applications in quantum information theory. Here we propose a scheme to generate long-lived singlet pairs in an unpola rized nuclear spin ensemble which is dipolar coupled to the electron spins of a Nitrogen Vacancy center in diamond. The quantum mechanical back-action induced by frequent spin-selective readout of the NV centers allows the nuclear spins to pair up into maximally entangled singlet pairs. Counterintuitively, the robustness of the pair formation to dephasing noise improves with increasing size of the spin ensemble. We also show how the paired nuclear spin state allows for enhanced sensing capabilities of NV centers in diamond.
The order parameter of superconducting pairs penetrating an inhomogeneous magnetic material can acquire a long range triplet component (LRTC) with non-zero spin projection. This state has been predicted and generated recently in proximity systems and Josephson junctions. We show using an analytically derived domain wall of an exchange spring how the LRTC emerges and can be tuned with the twisting of the magnetization. We also introduce a new kind of Josephson current reversal, the triplet $0-pi$ transition, that can be observed in one and the same system either by tuning the domain wall or by varying temperature.
89 - Caitlin Batey , Jan Jeske , 2015
Adiabatic methods are potentially important for quantum information protocols because of their robustness against many sources of technical and fundamental noise. They are particularly useful for quantum transport, and in some cases elementary quantu m gates. Here we explore the extension of a particular protocol, dark state adiabatic passage, where a spin state is transported across a branched network of initialised spins, comprising one `input spin, and multiple leaf spins. We find that maximal entanglement is generated in systems of spin-half particles, or where the system is limited to one excitation.
Defects with associated electron and nuclear spins in solid-state materials have a long history relevant to quantum information science going back to the first spin echo experiments with silicon dopants in the 1950s. Since the turn of the century, th e field has rapidly spread to a vast array of defects and host crystals applicable to quantum communication, sensing, and computing. From simple spin resonance to long-distance remote entanglement, the complexity of working with spin defects is fast advancing, and requires an in-depth understanding of their spin, optical, charge, and material properties in this modern context. This is especially critical for discovering new relevant systems dedicated to specific quantum applications. In this review, we therefore expand upon all the key components with an emphasis on the properties of defects and the host material, on engineering opportunities and other pathways for improvement. Finally, this review aims to be as defect and material agnostic as possible, with some emphasis on optical emitters, providing a broad guideline for the field of solid-state spin defects for quantum information.
The burgeoning interest in 2D black phosphorus (bP) contributes to expand its applications in countless fields. In the present study, 2D bP is used as a support for homogeneously dispersed palladium nanoparticles directly grown on it by a wet chemica l process. EELS-STEM analysis evidences a strong interaction between palladium and P atoms of bP nanosheets. A quantitative evaluation of this interaction comes from XAS measurements that find out a very short Pd-P distance of 2.26 {AA} proving for the first time the existence of an unprecedented Pd-P coordination bond of covalent nature. Additionally, the average Pd-P coordination number of about 1.7 reveals that bP acts as a polydentate phosphine ligand towards the surface Pd atoms of the nanoparticles, thus preventing their agglomeration and inferring structural stability. These unique properties result in a superior performance in the catalytic hydrogenation of chloronitroarenes to chloroaniline, where a higher chemoselectivity in comparison to other heterogeneous catalyst based on palladium has been observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا