ﻻ يوجد ملخص باللغة العربية
Since its discovery, the environmental instability of exfoliated black phosphorus (2D bP) has emerged as a challenge that hampers its wide application in chemistry, physics, and materials science. Many studies have been carried out to overcome this drawback. Here we show a relevant enhancement of ambient stability in few-layer bP decorated with nickel nanoparticles as compared to pristine bP. In detail, the behavior of the Ni-functionalized material exposed to ambient conditions in the dark is accurately studied by TEM (Transmission Electron Microscopy), Raman Spectroscopy, and high resolution X-ray Photoemission and Absorption Spectroscopy. These techniques provide a morphological and quantitative insight of the oxidation process taking place at the surface of the bP flakes. In the presence of Ni NPs, the decay time of 2D bP to phosphorus oxides is more than three time slower compared to pristine bP, demonstrating an improved structural stability within twenty months of observation.
The unique optoelectronic properties of black phosphorus (BP) have triggered great interest in its applications in areas not fulfilled by other layered materials (LMs). However, its poor stability (fast degradation, i.e. <<1 h for monolayers) under a
The burgeoning interest in 2D black phosphorus (bP) contributes to expand its applications in countless fields. In the present study, 2D bP is used as a support for homogeneously dispersed palladium nanoparticles directly grown on it by a wet chemica
Liquid phase exfoliation is a commonly used method to produce 2D nanosheets from a range of layered crystals. However, such nanosheets display broad size and thickness distributions and correlations between area and thickness, issues that limit nanos
Nitrogen vacancy (NV) centres in diamond are attractive as quantum sensors owing to their superb coherence under ambient conditions. However, the NV centre spin resonances are relatively insensitive to some important parameters such as temperature. H
A 3D mechanical stable scaffold is shown to accommodate the volume change of a high specific capacity nickel-tin nanocomposite Li-ion battery anode. When the nickel-tin anode is formed on an electrochemically inactive conductive scaffold with an engi