ﻻ يوجد ملخص باللغة العربية
In this document, we explore in more detail our published work (Komorowski, Celi, Badawi, Gordon, & Faisal, 2018) for the benefit of the AI in Healthcare research community. In the above paper, we developed the AI Clinician system, which demonstrated how reinforcement learning could be used to make useful recommendations towards optimal treatment decisions from intensive care data. Since publication a number of authors have reviewed our work (e.g. Abbasi, 2018; Bos, Azoulay, & Martin-Loeches, 2019; Saria, 2018). Given the difference of our framework to previous work, the fact that we are bridging two very different academic communities (intensive care and machine learning) and that our work has impact on a number of other areas with more traditional computer-based approaches (biosignal processing and control, biomedical engineering), we are providing here additional details on our recent publication.
The Artificial Intelligence (AI) revolution foretold of during the 1960s is well underway in the second decade of the 21st century. Its period of phenomenal growth likely lies ahead. Still, we believe, there are crucial lessons that biology can offer
Sepsis is a leading cause of mortality in intensive care units and costs hospitals billions annually. Treating a septic patient is highly challenging, because individual patients respond very differently to medical interventions and there is no unive
This paper is about the meaning of understanding in scientific and in artificial intelligent systems. We give a mathematical definition of the understanding, where, contrary to the common wisdom, we define the probability space on the input set, and
Guideline-based treatment for sepsis and septic shock is difficult because sepsis is a disparate range of life-threatening organ dysfunctions whose pathophysiology is not fully understood. Early intervention in sepsis is crucial for patient outcome,
Despite decades of clinical research, sepsis remains a global public health crisis with high mortality, and morbidity. Currently, when sepsis is detected and the underlying pathogen is identified, organ damage may have already progressed to irreversi