ﻻ يوجد ملخص باللغة العربية
This paper is about the meaning of understanding in scientific and in artificial intelligent systems. We give a mathematical definition of the understanding, where, contrary to the common wisdom, we define the probability space on the input set, and we treat the transformation made by an intelligent actor not as a loss of information, but instead a reorganization of the information in the framework of a new coordinate system. We introduce, following the ideas of physical renormalization group, the notions of relevant and irrelevant parameters, and discuss, how the different AI tasks can be interpreted along these concepts, and how the process of learning can be described. We show, how scientific understanding fits into this framework, and demonstrate, what is the difference between a scientific task and pattern recognition. We also introduce a measure of relevance, which is useful for performing lossy compression.
In this document, we explore in more detail our published work (Komorowski, Celi, Badawi, Gordon, & Faisal, 2018) for the benefit of the AI in Healthcare research community. In the above paper, we developed the AI Clinician system, which demonstrated
The ability to use symbols is the pinnacle of human intelligence, but has yet to be fully replicated in machines. Here we argue that the path towards symbolically fluent artificial intelligence (AI) begins with a reinterpretation of what symbols are,
This article reviews the Once learning mechanism that was proposed 23 years ago and the subsequent successes of One-shot learning in image classification and You Only Look Once - YOLO in objective detection. Analyzing the current development of Artif
The Light-Up puzzle, also known as the AKARI puzzle, has never been solved using modern artificial intelligence (AI) methods. Currently, the most widely used computational technique to autonomously develop solutions involve evolution theory algorithm
The common view that our creativity is what makes us uniquely human suggests that incorporating research on human creativity into generative deep learning techniques might be a fruitful avenue for making their outputs more compelling and human-like.