ﻻ يوجد ملخص باللغة العربية
The Artificial Intelligence (AI) revolution foretold of during the 1960s is well underway in the second decade of the 21st century. Its period of phenomenal growth likely lies ahead. Still, we believe, there are crucial lessons that biology can offer that will enable a prosperous future for AI. For machines in general, and for AIs especially, operating over extended periods or in extreme environments will require energy usage orders of magnitudes more efficient than exists today. In many operational environments, energy sources will be constrained. Any plans for AI devices operating in a challenging environment must begin with the question of how they are powered, where fuel is located, how energy is stored and made available to the machine, and how long the machine can operate on specific energy units. Hence, the materials and technologies that provide the needed energy represent a critical challenge towards future use-scenarios of AI and should be integrated into their design. Here we make four recommendations for stakeholders and especially decision makers to facilitate a successful trajectory for this technology. First, that scientific societies and governments coordinate Biomimetic Research for Energy-efficient, AI Designs (BREAD); a multinational initiative and a funding strategy for investments in the future integrated design of energetics into AI. Second, that biomimetic energetic solutions be central to design consideration for future AI. Third, that a pre-competitive space be organized between stakeholder partners and fourth, that a trainee pipeline be established to ensure the human capital required for success in this area.
In this document, we explore in more detail our published work (Komorowski, Celi, Badawi, Gordon, & Faisal, 2018) for the benefit of the AI in Healthcare research community. In the above paper, we developed the AI Clinician system, which demonstrated
This article reviews the Once learning mechanism that was proposed 23 years ago and the subsequent successes of One-shot learning in image classification and You Only Look Once - YOLO in objective detection. Analyzing the current development of Artif
The ability to use symbols is the pinnacle of human intelligence, but has yet to be fully replicated in machines. Here we argue that the path towards symbolically fluent artificial intelligence (AI) begins with a reinterpretation of what symbols are,
Meta-learning, or learning to learn, has gained renewed interest in recent years within the artificial intelligence community. However, meta-learning is incredibly prevalent within nature, has deep roots in cognitive science and psychology, and is cu
Recent advances in artificial intelligence (AI) have lead to an explosion of multimedia applications (e.g., computer vision (CV) and natural language processing (NLP)) for different domains such as commercial, industrial, and intelligence. In particu