ﻻ يوجد ملخص باللغة العربية
In the study of the anomalous Hall effect, the scaling relations between the anomalous Hall and longitudinal resistivities play the central role. The scaling parameters by definition are fixed as the scaling variable (longitudinal resistivity) changes. Contrary to this paradigm, we unveil that the electron-phonon scattering can result in apparent temperature-dependence of scaling parameters when the longitudinal resistivity is tuned through temperature. An experimental approach is proposed to observe this hitherto unexpected temperature-dependence. We further show that this phenomenon also exists in the nonlinear Hall effect in nonmagnetic inversion-breaking materials and may help identify experimentally the presence of the side-jump contribution besides the Berry-curvature dipole.
We present a systematic microscopic derivation of the semiclassical Boltzmann equation for band structures with the finite Berry curvature based on Keldysh technique of nonequilibrium systems. In the analysis, an ac electrical driving field is kept u
In recent years, it has been shown that Berry curvature monopoles and dipoles play essential roles in the anomalous Hall effect and the nonlinear Hall effect respectively. In this work, we demonstrate that Berry curvature multipoles (the higher momen
Anomalous Hall effect (AHE) is important for understanding the topological properties of electronic states, and provides insight into the spin-polarized carriers of magnetic materials. AHE has been extensively studied in metallic, but not variable-ra
We derive a general scaling relation for the anomalous Hall effect in ferromagnetic metals involving multiple competing scattering mechanisms, described by a quadratic hypersurface in the space spanned by the partial resistivities. We also present ex
Anomalous spin Hall effects that belong to the intrinsic type in Dresselhaus (110) quantum wells are discussed. For the out-of-plane spin component, antisymmetric current-induced spin polarization induces opposite spin Hall accumulation, even though