ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling parameters in anomalous and nonlinear Hall effects depend on temperature

43   0   0.0 ( 0 )
 نشر من قبل Cong Xiao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the study of the anomalous Hall effect, the scaling relations between the anomalous Hall and longitudinal resistivities play the central role. The scaling parameters by definition are fixed as the scaling variable (longitudinal resistivity) changes. Contrary to this paradigm, we unveil that the electron-phonon scattering can result in apparent temperature-dependence of scaling parameters when the longitudinal resistivity is tuned through temperature. An experimental approach is proposed to observe this hitherto unexpected temperature-dependence. We further show that this phenomenon also exists in the nonlinear Hall effect in nonmagnetic inversion-breaking materials and may help identify experimentally the presence of the side-jump contribution besides the Berry-curvature dipole.



قيم البحث

اقرأ أيضاً

We present a systematic microscopic derivation of the semiclassical Boltzmann equation for band structures with the finite Berry curvature based on Keldysh technique of nonequilibrium systems. In the analysis, an ac electrical driving field is kept u p to quadratic order, and both cases of small and large frequencies corresponding to intra- and interband transitions are considered. In particular, this formulation is suitable for the study of nonlinear Hall effect and photogalvanic phenomena. The role of impurity scattering is carefully addressed. Specifically, in addition to previously studied side-jump and skew-scattering processes, quantum interference diffractive contributions are now explicitly incorporated within the developed framework. This theory is applied to multifold fermions in topological semimetals, for which the generic formula for the skew scattering rate from the Pancharatnam phase is obtained along with the corresponding anomalous Hall conductivity.
In recent years, it has been shown that Berry curvature monopoles and dipoles play essential roles in the anomalous Hall effect and the nonlinear Hall effect respectively. In this work, we demonstrate that Berry curvature multipoles (the higher momen ts of Berry curvatures at the Fermi energy) can induce higher-order nonlinear anomalous Hall (NLAH) effect. Specifically, an AC Hall voltage perpendicular to the current direction emerges, where the frequency is an integer multiple of the frequency of the applied current. Importantly, by analyzing the symmetry properties of all the 3D and 2D magnetic point groups, we note that the quadrupole, hexapole and even higher Berry curvature moments can cause the leading-order frequency multiplication in certain materials. To provide concrete examples, we point out that the third-order NLAH voltage can be the leading-order Hall response in certain antiferromagnets due to Berry curvature quadrupoles, and the fourth-order NLAH voltage can be the leading response in the surface states of topological insulators induced by Berry curvature hexapoles. Our results are established by symmetry analysis, effective Hamiltonian and first-principles calculations. Other materials which support the higher-order NLAH effect are further proposed, including 2D antiferromagnets and ferromagnets, Weyl semimetals and twisted bilayer graphene near the quantum anomalous Hall phase.
373 - R. M. Qiao , S. S. Yan , T. S. Xu 2014
Anomalous Hall effect (AHE) is important for understanding the topological properties of electronic states, and provides insight into the spin-polarized carriers of magnetic materials. AHE has been extensively studied in metallic, but not variable-ra nge-hopping (VRH), regime. Here we report the experiments of both anomalous and ordinary Hall effect (OHE) in Mott and Efros VRH regimes. We found unusual scaling law of the AHE coefficient $Rah=aRxx^b$ with b>2, contrasting the OHE coefficient $Roh=cRxx^d$ with d<1. More strikingly, the sign of AHE coefficient changes with temperature with specific electron densities.
949 - Dazhi Hou , Gang Su , Yuan Tian 2015
We derive a general scaling relation for the anomalous Hall effect in ferromagnetic metals involving multiple competing scattering mechanisms, described by a quadratic hypersurface in the space spanned by the partial resistivities. We also present ex perimental findings, which show strong deviation from previously found scaling forms when different scattering mechanism compete in strength but can be nicely explained by our theory.
Anomalous spin Hall effects that belong to the intrinsic type in Dresselhaus (110) quantum wells are discussed. For the out-of-plane spin component, antisymmetric current-induced spin polarization induces opposite spin Hall accumulation, even though there is no spin-orbit force due to Dresselhaus (110) coupling. A surprising feature of this spin Hall induction is that the spin accumulation sign does not change upon bias reversal. Contribution to the spin Hall accumulation from the spin Hall induction and the spin deviation due to intrinsic spin-orbit force as well as extrinsic spin scattering, can be straightforwardly distinguished simply by reversing the bias. For the inplane component, inclusion of a weak Rashba coupling leads to a new type of $S_y$ intrinsic spin Hall effect solely due to spin-orbit-force-driven spin separation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا