ترغب بنشر مسار تعليمي؟ اضغط هنا

Multivariable Scaling for the Anomalous Hall Effect

625   0   0.0 ( 0 )
 نشر من قبل Dazhi Hou
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive a general scaling relation for the anomalous Hall effect in ferromagnetic metals involving multiple competing scattering mechanisms, described by a quadratic hypersurface in the space spanned by the partial resistivities. We also present experimental findings, which show strong deviation from previously found scaling forms when different scattering mechanism compete in strength but can be nicely explained by our theory.



قيم البحث

اقرأ أيضاً

We report on the scaling behavior of V-doped (Bi,Sb)$_2$Te$_3$ samples in the quantum anomalous Hall regime for samples of various thickness. While previous quantum anomalous Hall measurements showed the same scaling as expected from a two-dimensiona l integer quantum Hall state, we observe a dimensional crossover to three spatial dimensions as a function of layer thickness. In the limit of a sufficiently thick layer, we find scaling behavior matching the flow diagram of two parallel conducting topological surface states of a three-dimensional topological insulator each featuring a fractional shift of $frac{1}{2} e^2/h$ in the flow diagram Hall conductivity, while we recover the expected integer quantum Hall behavior for thinner layers. This constitutes the observation of a distinct type of quantum anomalous Hall effect, resulting from $frac{1}{2} e^2/h$ Hall conductance quantization of three-dimensional topological insulator surface states, in an experiment which does not require decomposition of signal to separate the contribution of two surfaces. This provides a possible experimental link between quantum Hall physics and axion electrodynamics.
We predict an anomalous thermal Hall effect (ATHE) mediated by photons in networks of Weyl semi-metals. Contrary to the photon thermal Hall effect in magneto-optical systems which requires the application of an external magnetic field the ATHE in a W eyl semi-metals network is an intrinsic property of these systems. Since the Weyl semi-metals can exhibit a strong nonreciprocal response in the infrared over a broad spectral range the magnitude of thermal Hall flux in these systems can be relatively large compared to the primary flux. This ATHE paves the way for a directional control of heat flux by localy tuning the magnitude of temperature field without changing the direction of temperature gradient.
ZrTe$_5$ has been of recent interest as a potential Dirac/Weyl semimetal material. Here, we report the results of experiments performed via in-situ 3D double-axis rotation to extract the full $4pi$ solid angular dependence of the transport properties . A clear anomalous Hall effect (AHE) was detected for every sample, with no magnetic ordering observed in the system to the experimental sensitivity of torque magnetometry. Interestingly, the AHE takes large values when the magnetic field is rotated in-plane, with the values vanishing above $sim 60$ K where the negative longitudinal magnetoresistance (LMR) also disappears. This suggests a close relation in their origins, which we attribute to Berry curvature generated by the Weyl nodes.
Even at the lowest accessible temperatures, measurements of the quantum anomalous Hall (QAH) effect have indicated the presence of parasitic dissipative conduction channels. There is no consensus whether parasitic conduction is related to processes i n the bulk or along the edges. Here, we approach this problem by comparing transport measurements of Hall bar and Corbino geometry devices fabricated from Cr-doped (BiSb)$_2$Te$_3$. We identify bulk conduction as the dominant source of dissipation at all values of temperature and in-plane electric field. Furthermore, we observe identical breakdown phenomenology in both geometries, indicating that breakdown of the QAH phase is a bulk process. The methodology developed in this study could be used to identify dissipative conduction mechanisms in new QAH materials, ultimately guiding material development towards realization of the QAH effect at higher temperatures.
We employ a quantum Liouville equation with relaxation to model the recently observed anomalous Hall effect in graphene irradiated by an ultrafast pulse of circularly polarized light. In the weak-field regime, we demonstrate that the Hall effect orig inates from an asymmetric population of photocarriers in the Dirac bands. By contrast, in the strong-field regime, the system is driven into a non-equilibrium steady state that is well-described by topologically non-trivial Floquet-Bloch bands. Here, the anomalous Hall current originates from the combination of a population imbalance in these dressed bands together with a smaller anomalous velocity contribution arising from their Berry curvature. This robust and general finding enables the simulation of electrical transport from light-induced Floquet-Bloch bands in an experimentally relevant parameter regime and creates a pathway to designing ultrafast quantum devices with Floquet-engineered transport properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا