ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum kinetics of anomalous and nonlinear Hall effects in topological semimetals

303   0   0.0 ( 0 )
 نشر من قبل Alex Levchenko
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a systematic microscopic derivation of the semiclassical Boltzmann equation for band structures with the finite Berry curvature based on Keldysh technique of nonequilibrium systems. In the analysis, an ac electrical driving field is kept up to quadratic order, and both cases of small and large frequencies corresponding to intra- and interband transitions are considered. In particular, this formulation is suitable for the study of nonlinear Hall effect and photogalvanic phenomena. The role of impurity scattering is carefully addressed. Specifically, in addition to previously studied side-jump and skew-scattering processes, quantum interference diffractive contributions are now explicitly incorporated within the developed framework. This theory is applied to multifold fermions in topological semimetals, for which the generic formula for the skew scattering rate from the Pancharatnam phase is obtained along with the corresponding anomalous Hall conductivity.



قيم البحث

اقرأ أيضاً

141 - Cong Xiao , Z. Z. Du , 2019
We propose a modified Boltzmann nonlinear electric-transport framework which differs from the nonlinear generalization of the linear Boltzmann formalism by a contribution that has no counterpart in linear response. This contribution follows from the interband-coherence effect of dc electric-fields during scattering and is related to the interband Berry connection. As an application, we demonstrate it in the second-order nonlinear Hall effect of the tilted massive Dirac model. The intuitive Boltzmann constructions are confirmed by a quantum kinetic theory, which shows that arbitrary $n$th-order nonlinear dc response up to the first three leading contributions in the weak disorder potential is handled by the same few gauge-invariant semiclassical ingredients.
127 - Jue Jiang , Di Xiao , Fei Wang 2019
The quantum anomalous Hall (QAH) effect is a quintessential consequence of non-zero Berry curvature in momentum-space. The QAH insulator harbors dissipation-free chiral edge states in the absence of an external magnetic field. On the other hand, the topological Hall (TH) effect, a transport hallmark of the chiral spin textures, is a consequence of real-space Berry curvature. While both the QAH and TH effects have been reported separately, their coexistence, a manifestation of entangled chiral edge states and chiral spin textures, has not been reported. Here, by inserting a TI layer between two magnetic TI layers to form a sandwich heterostructure, we realized a concurrence of the TH effect and the QAH effect through electric field gating. The TH effect is probed by bulk carriers, while the QAH effect is characterized by chiral edge states. The appearance of TH effect in the QAH insulating regime is the consequence of chiral magnetic domain walls that result from the gate-induced Dzyaloshinskii-Moriya interaction and occur during the magnetization reversal process in the magnetic TI sandwich samples. The coexistence of chiral edge states and chiral spin textures potentially provides a unique platform for proof-of-concept dissipationless spin-textured spintronic applications.
Chiral anomaly or Adler-Bell-Jackiw anomaly in Weyl semimetals (WSMs) has a significant impact on the electron transport behaviors, leading to remarkable longitudinal or planar electrical and thermoelectric transport phenomena in the presence of elec tromagnetic gauge fields. These phenomena are consequences of the imbalanced chiral charge and energy induced by chiral anomaly in the presence of parallel electric ($mathbf{E}$) and magnetic ($mathbf{B}$) fields ($mathbf{E cdot B } eq 0$) or $(mathbf{B cdot abla }T eq 0)$ ($mathbf{ abla}T$ is the thermal gradient). We here propose another two fascinating transport properties, namely, the nonlinear planar Nernst effect and nonlinear planar thermal Hall effect induced by chiral anomaly in the presence of $mathbf{B cdot abla}T eq 0$ in WSMs. Using the semiclassical Boltzmann transport theory, we derive the analytical expressions for the chiral anomaly induced nonlinear Nernst and thermal Hall transport coefficients and also evaluate the fundamental mathematical relations among them in the nonlinear regime. The formulas we find in this current work are consistent with that predicted for the nonlinear anomalous electrical and thermoelectric effects induced by Berry curvature dipole recently. Additionally, in contrast to the recent work, by utilizing the lattice Weyl Hamiltonian with intrinsic chiral chemical potential, we find that the chiral anomaly induced nonlinear planar effects can exist even for a pair of oppositely tilted or non-tilted Weyl cones in both time reversal and inversion broken WSMs. The chiral anomaly induced nonlinear planar effects predicted here along with the related parameter dependencies are hence possible to be realized in realistic WSMs in experiment.
The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the Fermi arc at a single surface has an op en Fermi surface, which cannot host the quantum Hall effect. Via a wormhole tunneling assisted by the Weyl nodes, the Fermi arcs at opposite surfaces can form a complete Fermi loop and support the quantum Hall effect. The edge states of the Fermi arcs show a unique 3D distribution, giving an example of (d-2)-dimensional boundary states. This is distinctly different from the surface-state quantum Hall effect from a single surface of topological insulator. As the Fermi energy sweeps through the Weyl nodes, the sheet Hall conductivity evolves from the 1/B dependence to quantized plateaus at the Weyl nodes. This behavior can be realized by tuning gate voltages in a slab of topological semimetal, such as the TaAs family, Cd$_3$As$_2$, or Na$_3$Bi. This work will be instructive not only for searching transport signatures of the Fermi arcs but also for exploring novel electron gases in other topological phases of matter.
In the study of the anomalous Hall effect, the scaling relations between the anomalous Hall and longitudinal resistivities play the central role. The scaling parameters by definition are fixed as the scaling variable (longitudinal resistivity) change s. Contrary to this paradigm, we unveil that the electron-phonon scattering can result in apparent temperature-dependence of scaling parameters when the longitudinal resistivity is tuned through temperature. An experimental approach is proposed to observe this hitherto unexpected temperature-dependence. We further show that this phenomenon also exists in the nonlinear Hall effect in nonmagnetic inversion-breaking materials and may help identify experimentally the presence of the side-jump contribution besides the Berry-curvature dipole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا