ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate a family of graphs associated to collections of arcs on surfaces. These {it multiarc graphs} naturally interpolate between arc graphs and flip graphs, both well studied objects in low dimensional geometry and topology. We show a number of rigidity results, namely showing that, under certain complexity conditions, that simplicial maps between them only arise in the obvious way. We also observe that, again under necessary complexity conditions, subsurface strata are convex. Put together, these results imply that certain simplicial maps always give rise to convex images.
An infinite-type surface $Sigma$ is of type $mathcal{S}$ if it has an isolated puncture $p$ and admits shift maps. This includes all infinite-type surfaces with an isolated puncture outside of two sporadic classes. Given such a surface, we construct
Let $X_{0}$ be a complete hyperbolic surface of infinite type with geodesic boundary which admits a countable pair of pants decomposition. As an application of the Basmajian identity for complete bordered hyperbolic surfaces of infinite type with lim
We associate to triangulations of infinite type surface a type of flip graph where simultaneous flips are allowed. Our main focus is on understanding exactly when two triangulations can be related by a sequence of flips. A consequence of our results
The arc graph $delta(G)$ of a digraph $G$ is the digraph with the set of arcs of $G$ as vertex-set, where the arcs of $delta(G)$ join consecutive arcs of $G$. In 1981, Poljak and R{o}dl characterised the chromatic number of $delta(G)$ in terms of the
We prove that cubical simplicial volume of oriented closed 3-manifolds is equal to one fifth of ordinary simplicial volume.