ﻻ يوجد ملخص باللغة العربية
An infinite-type surface $Sigma$ is of type $mathcal{S}$ if it has an isolated puncture $p$ and admits shift maps. This includes all infinite-type surfaces with an isolated puncture outside of two sporadic classes. Given such a surface, we construct an infinite family of intrinsically infinite-type mapping classes that act loxodromically on the relative arc graph $mathcal{A}(Sigma, p)$. J. Bavard produced such an element for the plane minus a Cantor set, and our result gives the first examples of such mapping classes for all other surfaces of type $mathcal{S}$. The elements we construct are the composition of three shift maps on $Sigma$, and we give an alternate characterization of these elements as a composition of a pseudo-Anosov on a finite-type subsurface of $Sigma$ and a standard shift map. We then explicitly find their limit points on the boundary of $mathcal{A}(Sigma,p)$ and their limiting geodesic laminations. Finally, we show that these infinite-type elements can be used to prove that Map$(Sigma,p)$ has an infinite-dimensional space of quasimorphisms.
Let $X_{0}$ be a complete hyperbolic surface of infinite type with geodesic boundary which admits a countable pair of pants decomposition. As an application of the Basmajian identity for complete bordered hyperbolic surfaces of infinite type with lim
In this paper, we investigate a family of graphs associated to collections of arcs on surfaces. These {it multiarc graphs} naturally interpolate between arc graphs and flip graphs, both well studied objects in low dimensional geometry and topology. W
We associate to triangulations of infinite type surface a type of flip graph where simultaneous flips are allowed. Our main focus is on understanding exactly when two triangulations can be related by a sequence of flips. A consequence of our results
Let ${bf H}_{mathbb C}^n$ be the $n$-dimensional complex hyperbolic space and ${rm SU}(n,1)$ be the (holomorphic) isometry group. An element $g$ in ${rm SU}(n,1)$ is called loxodromic or hyperbolic if it has exactly two fixed points on the boundary $
We show that any surface of infinite type admits an ideal triangulation. Furthermore, we show that a set of disjoint arcs can be completed into a triangulation if and only if, as a set, they intersect every simple closed curve a finite number of times.