ﻻ يوجد ملخص باللغة العربية
Let $X_{0}$ be a complete hyperbolic surface of infinite type with geodesic boundary which admits a countable pair of pants decomposition. As an application of the Basmajian identity for complete bordered hyperbolic surfaces of infinite type with limit sets of 1-dimensional measure zero, we define an asymmetric metric (which is called arc metric) on the quasiconformal Teichmuller space $mathcal{T}(X_{0})$ provided that $X_{0}$ satisfies a geometric condition. Furthermore, we construct several examples of hyperbolic surfaces of infinite type satisfying the geometric condition and discuss the relation between the Shigas condition and the geometric condition.
A family of coordinates $psi_h$ for the Teichmuller space of a compact surface with boundary was introduced in cite{l2}. In the work cite{m1}, Mondello showed that the coordinate $psi_0$ can be used to produce a natural cell decomposition of the Teic
We prove that the length spectrum metric and the arc-length spectrum metric are almost-isometric on the $epsilon_0$-relative part of Teichmuller spaces of surfaces with boundary.
The arc metric is an asymmetric metric on the Teichm{u}ller space T(S) of a surface S with nonempty boundary. In this paper we study the relation between Thurstons compactification and the horofunction compactification of T(S) endowed with the arc me
An infinite-type surface $Sigma$ is of type $mathcal{S}$ if it has an isolated puncture $p$ and admits shift maps. This includes all infinite-type surfaces with an isolated puncture outside of two sporadic classes. Given such a surface, we construct
The loop graph of an infinite type surface is an infinite diameter hyperbolic graph first studied in detail by Juliette Bavard. An important open problem in the study of infinite type surfaces is to describe the boundary of the loop graph as a space