ترغب بنشر مسار تعليمي؟ اضغط هنا

Iterated Arc Graphs

54   0   0.0 ( 0 )
 نشر من قبل Danny Rorabaugh
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The arc graph $delta(G)$ of a digraph $G$ is the digraph with the set of arcs of $G$ as vertex-set, where the arcs of $delta(G)$ join consecutive arcs of $G$. In 1981, Poljak and R{o}dl characterised the chromatic number of $delta(G)$ in terms of the chromatic number of $G$ when $G$ is symmetric (i.e., undirected). In contrast, directed graphs with equal chromatic numbers can have arc graphs with distinct chromatic numbers. Even though the arc graph of a symmetric graph is not symmetric, we show that the chromatic number of the iterated arc graph $delta^k(G)$ still only depends on the chromatic number of $G$ when $G$ is symmetric.



قيم البحث

اقرأ أيضاً

This paper begins the classification of all edge-primitive 3-arc-transitive graphs by classifying all such graphs where the automorphism group is an almost simple group with socle an alternating or sporadic group, and all such graphs where the automo rphism group is an almost simple classical group with a vertex-stabiliser acting faithfully on the set of neighbours.
80 - Zaiping Lu 2018
A graph is edge-primitive if its automorphism group acts primitively on the edge set. In this short paper, we prove that a finite 2-arc-transitive edge-primitive graph has almost simple automorphism group if it is neither a cycle nor a complete bipar tite graph. We also present two examples of such graphs, which are 3-arc-transitive and have faithful vertex-stabilizers.
Gromov hyperbolicity is an interesting geometric property, and so it is natural to study it in the context of geometric graphs. It measures the tree-likeness of a graph from a metric viewpoint. In particular, we are interested in circular-arc graphs, which is an important class of geometric intersection graphs. In this paper we give sharp bounds for the hyperbolicity constant of (finite and infinite) circular-arc graphs. Moreover, we obtain bounds for the hyperbolicity constant of the complement and line of any circular-arc graph. In order to do that, we obtain new results about regular, chordal and line graphs which are interesting by themselves.
It is shown that each subgroup of odd index in an alternating group of degree at least 10 has all insoluble composition factors to be alternating. A classification is then given of 2-arc-transitive graphs of odd order admitting an alternating group o r a symmetric group. This is the second of a series of papers aiming towards a classification of 2-arc-transitive graphs of odd order.
In 2011, Fang et al. in (J. Combin. Theory A 118 (2011) 1039-1051) posed the following problem: Classify non-normal locally primitive Cayley graphs of finite simple groups of valency $d$, where either $dleq 20$ or $d$ is a prime number. The only case for which the complete solution of this problem is known is of $d=3$. Except this, a lot of efforts have been made to attack this problem by considering the following problem: Characterize finite nonabelian simple groups which admit non-normal locally primitive Cayley graphs of certain valency $dgeq4$. Even for this problem, it was only solved for the cases when either $dleq 5$ or $d=7$ and the vertex stabilizer is solvable. In this paper, we make crucial progress towards the above problems by completely solving the second problem for the case when $dgeq 11$ is a prime and the vertex stabilizer is solvable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا