ترغب بنشر مسار تعليمي؟ اضغط هنا

Rapid Circadian Entrainment in Models of Circadian Genes Regulation

106   0   0.0 ( 0 )
 نشر من قبل Jiawei Yin
 تاريخ النشر 2019
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The light-based minimum-time circadian entrainment problem for mammals, Neurospora, and Drosophila is studied based on the mathematical models of their circadian gene regulation. These models contain high order nonlinear differential equations. Two model simplification methods are applied to these high-order models: the phase response curves (PRC) and the Principal Orthogonal Decomposition (POD). The variational calculus and a gradient descent algorithm are applied for solving the optimal light input in the high-order models. As the results of the gradient descent algorithm rely heavily on the initial guesses, we use the optimal control of the PRC and the simplified model to initialize the gradient descent algorithm. In this paper, we present: (1) the application of PRC and direct shooting algorithm on high-order nonlinear models; (2) a general process for solving the minimum-time optimal control problem on high-order models; (3) the impacts of minimum-time optimal light on circadian gene transcription and protein synthesis.



قيم البحث

اقرأ أيضاً

Many organisms repartition their proteome in a circadian fashion in response to the daily nutrient changes in their environment. A striking example is provided by cyanobacteria, which perform photosynthesis during the day to fix carbon. These organis ms not only face the challenge of rewiring their proteome every 12 hours, but also the necessity of storing the fixed carbon in the form of glycogen to fuel processes during the night. In this manuscript, we extend the framework developed by Hwa and coworkers (Scott et al., Science 330, 1099 (2010)) for quantifying the relatinship between growth and proteome composition to circadian metabolism. We then apply this framework to investigate the circadian metabolism of the cyanobacterium Cyanothece, which not only fixes carbon during the day, but also nitrogen during the night, storing it in the polymer cyanophycin. Our analysis reveals that the need to store carbon and nitrogen tends to generate an extreme growth strategy, in which the cells predominantly grow during the day, as observed experimentally. This strategy maximizes the growth rate over 24 hours, and can be quantitatively understood by the bacterial growth laws. Our analysis also shows that the slow relaxation of the proteome, arising from the slow growth rate, puts a severe constraint on implementing this optimal strategy. Yet, the capacity to estimate the time of the day, enabled by the circadian clock, makes it possible to anticipate the daily changes in the environment and mount a response ahead of time. This significantly enhances the growth rate by counteracting the detrimental effects of the slow proteome relaxation.
84 - Jae Kyoung Kim 2016
Circadian (~24hr) clocks are self-sustained endogenous oscillators with which organisms keep track of daily and seasonal time. Circadian clocks frequently rely on interlocked transcriptional- translational feedback loops to generate rhythms that are robust against intrinsic and extrinsic perturbations. To investigate the dynamics and mechanisms of the intracellular feedback loops in circadian clocks, a number of mathematical models have been developed. The majority of the models use Hill functions to describe transcriptional repression in a way that is similar to the Goodwin model. Recently, a new class of models with protein sequestration-based repression has been introduced. Here, we discuss how this new class of models differs dramatically from those based on Hill-type repression in several fundamental aspects: conditions for rhythm generation, robust network designs and the periods of coupled oscillators. Consistently, these fundamental properties of circadian clocks also differ among Neurospora, Drosophila, and mammals depending on their key transcriptional repression mechanisms (Hill-type repression or protein sequestration). Based on both theoretical and experimental studies, this review highlights the importance of careful modeling of transcriptional repression mechanisms in molecular circadian clocks.
A wide range of organisms features molecular machines, circadian clocks, which generate endogenous oscillations with ~24 h periodicity and thereby synchronize biological processes to diurnal environmental fluctuations. Recently, it has become clear t hat plants harbor more complex gene regulatory circuits within the core circadian clocks than other organisms, inspiring a fundamental question: are all these regulatory interactions between clock genes equally crucial for the establishment and maintenance of circadian rhythms? Our mechanistic simulation for Arabidopsis thaliana demonstrates that at least half of the total regulatory interactions must be present to express the circadian molecular profiles observed in wild-type plants. A set of those essential interactions is called herein a kernel of the circadian system. The kernel structure unbiasedly reveals four interlocked negative feedback loops contributing to circadian rhythms, and three feedback loops among them drive the autonomous oscillation itself. Strikingly, the kernel structure, as well as the whole clock circuitry, is overwhelmingly composed of inhibitory, rather than activating, interactions between genes. We found that this tendency underlies plant circadian molecular profiles which often exhibit sharply-shaped, cuspidate waveforms. Through the generation of these cuspidate profiles, inhibitory interactions may facilitate the global coordination of temporally-distant clock events that are markedly peaked at very specific times of day. Our systematic approach resulting in experimentally-testable predictions provides insights into a design principle of biological clockwork, with implications for synthetic biology.
In mammals, most cells in the brain and peripheral tissues generate circadian (~24hr) rhythms autonomously. These self-sustained rhythms are coordinated and entrained by a master circadian clock in the suprachiasmatic nucleus (SCN). Within the SCN, t he individual rhythms of each neuron are synchronized through intercellular signaling. One important feature of SCN is that the synchronized period is close to the cell population mean of intrinsic periods. In this way, the synchronized period of the SCN stays close to the periods of cells in peripheral tissues. This is important for SCN to entrain cells throughout the body. However, the mechanism that drives the period of the coupled SCN cells to the population mean is not known. We use mathematical modeling and analysis to show that the mechanism of transcription repression plays a pivotal role in regulating the coupled period. Specifically, we use phase response curve analysis to show that the coupled period within the SCN stays near the population mean if transcriptional repression occurs via protein sequestration. In contrast, the coupled period is far from the mean if repression occurs through highly nonlinear Hill-type regulation (e.g. oligomer- or phosphorylation-based repression). Furthermore, we find that the timescale of intercellular coupling needs to be fast compared to that of intracellular feedback to maintain the mean period. These findings reveal the important relationship between the intracellular transcriptional feedback loop and intercellular coupling. This relationship explains why transcriptional repression appears to occur via protein sequestration in multicellular organisms, mammals and Drosophila, in contrast with the phosphorylation-based repression in unicellular organisms. That is, transition to protein sequestration is essential for synchronizing multiple cells with a period close to the population mean (~24hr).
The ability of a circadian system to entrain to the 24-hour light-dark cycle is one of its most important properties. A new tool, called the entrainment map, was recently introduced to study this process for a single oscillator. Here we generalize th e map to study the effects of light-dark forcing in a hierarchical system consisting of a central circadian oscillator that drives a peripheral circadian oscillator. We develop techniques to reduced the higher dimensional phase space of the coupled system to derive a generalized 2-D entrainment map. Determining the nature of various fixed points, together with an understanding of their stable and unstable manifolds, leads to conditions for existence and stability of periodic orbits of the circadian system. We use the map to investigate how various properties of solutions depend on parameters and initial conditions including the time to and direction of entrainment. We show that the concepts of phase advance and phase delay need to be carefully assessed when considering hierarchical systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا