ﻻ يوجد ملخص باللغة العربية
Circadian (~24hr) clocks are self-sustained endogenous oscillators with which organisms keep track of daily and seasonal time. Circadian clocks frequently rely on interlocked transcriptional- translational feedback loops to generate rhythms that are robust against intrinsic and extrinsic perturbations. To investigate the dynamics and mechanisms of the intracellular feedback loops in circadian clocks, a number of mathematical models have been developed. The majority of the models use Hill functions to describe transcriptional repression in a way that is similar to the Goodwin model. Recently, a new class of models with protein sequestration-based repression has been introduced. Here, we discuss how this new class of models differs dramatically from those based on Hill-type repression in several fundamental aspects: conditions for rhythm generation, robust network designs and the periods of coupled oscillators. Consistently, these fundamental properties of circadian clocks also differ among Neurospora, Drosophila, and mammals depending on their key transcriptional repression mechanisms (Hill-type repression or protein sequestration). Based on both theoretical and experimental studies, this review highlights the importance of careful modeling of transcriptional repression mechanisms in molecular circadian clocks.
In mammals, most cells in the brain and peripheral tissues generate circadian (~24hr) rhythms autonomously. These self-sustained rhythms are coordinated and entrained by a master circadian clock in the suprachiasmatic nucleus (SCN). Within the SCN, t
The light-based minimum-time circadian entrainment problem for mammals, Neurospora, and Drosophila is studied based on the mathematical models of their circadian gene regulation. These models contain high order nonlinear differential equations. Two m
We investigate the dynamics of the heterodimer autorepression loop (HAL), a small genetic module in which a protein A acts as an auto-repressor and binds to a second protein B to form a AB dimer. For suitable values of the rate constants the HAL prod
A wide range of organisms features molecular machines, circadian clocks, which generate endogenous oscillations with ~24 h periodicity and thereby synchronize biological processes to diurnal environmental fluctuations. Recently, it has become clear t
Here we present ComPPI, a cellular compartment specific database of proteins and their interactions enabling an extensive, compartmentalized protein-protein interaction network analysis (http://ComPPI.LinkGroup.hu). ComPPI enables the user to filter