ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of circadian metabolism

156   0   0.0 ( 0 )
 نشر من قبل Michele Monti
 تاريخ النشر 2018
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many organisms repartition their proteome in a circadian fashion in response to the daily nutrient changes in their environment. A striking example is provided by cyanobacteria, which perform photosynthesis during the day to fix carbon. These organisms not only face the challenge of rewiring their proteome every 12 hours, but also the necessity of storing the fixed carbon in the form of glycogen to fuel processes during the night. In this manuscript, we extend the framework developed by Hwa and coworkers (Scott et al., Science 330, 1099 (2010)) for quantifying the relatinship between growth and proteome composition to circadian metabolism. We then apply this framework to investigate the circadian metabolism of the cyanobacterium Cyanothece, which not only fixes carbon during the day, but also nitrogen during the night, storing it in the polymer cyanophycin. Our analysis reveals that the need to store carbon and nitrogen tends to generate an extreme growth strategy, in which the cells predominantly grow during the day, as observed experimentally. This strategy maximizes the growth rate over 24 hours, and can be quantitatively understood by the bacterial growth laws. Our analysis also shows that the slow relaxation of the proteome, arising from the slow growth rate, puts a severe constraint on implementing this optimal strategy. Yet, the capacity to estimate the time of the day, enabled by the circadian clock, makes it possible to anticipate the daily changes in the environment and mount a response ahead of time. This significantly enhances the growth rate by counteracting the detrimental effects of the slow proteome relaxation.



قيم البحث

اقرأ أيضاً

The light-based minimum-time circadian entrainment problem for mammals, Neurospora, and Drosophila is studied based on the mathematical models of their circadian gene regulation. These models contain high order nonlinear differential equations. Two m odel simplification methods are applied to these high-order models: the phase response curves (PRC) and the Principal Orthogonal Decomposition (POD). The variational calculus and a gradient descent algorithm are applied for solving the optimal light input in the high-order models. As the results of the gradient descent algorithm rely heavily on the initial guesses, we use the optimal control of the PRC and the simplified model to initialize the gradient descent algorithm. In this paper, we present: (1) the application of PRC and direct shooting algorithm on high-order nonlinear models; (2) a general process for solving the minimum-time optimal control problem on high-order models; (3) the impacts of minimum-time optimal light on circadian gene transcription and protein synthesis.
Polymer models are a widely used tool to study the prebiotic formation of metabolism at the origins of life. Counts of the number of reactions in these models are often crucial in probabilistic arguments concerning the emergence of autocatalytic netw orks. In the first part of this paper, we provide the first exact description of the number of reactions under widely applied model assumptions. Conclusions from earlier studies rely on either approximations or asymptotic counting, and we show that the exact counts lead to similar, though not always identical, asymptotic results. In the second part of the paper, we investigate a novel model assumption whereby polymers are invariant under spatial rotation. We outline the biochemical relevance of this condition and again give exact enumerative and asymptotic formulae for the number of reactions.
Complex biological systems are very robust to genetic and environmental changes at all levels of organization. Many biological functions of Escherichia coli metabolism can be sustained against single-gene or even multiple-gene mutations by using redu ndant or alternative pathways. Thus, only a limited number of genes have been identified to be lethal to the cell. In this regard, the reaction-centric gene deletion study has a limitation in understanding the metabolic robustness. Here, we report the use of flux-sum, which is the summation of all incoming or outgoing fluxes around a particular metabolite under pseudo-steady state conditions, as a good conserved property for elucidating such robustness of E. coli from the metabolite point of view. The functional behavior, as well as the structural and evolutionary properties of metabolites essential to the cell survival, was investigated by means of a constraints-based flux analysis under perturbed conditions. The essential metabolites are capable of maintaining a steady flux-sum even against severe perturbation by actively redistributing the relevant fluxes. Disrupting the flux-sum maintenance was found to suppress cell growth. This approach of analyzing metabolite essentiality provides insight into cellular robustness and concomitant fragility, which can be used for several applications, including the development of new drugs for treating pathogens.
A wide range of organisms features molecular machines, circadian clocks, which generate endogenous oscillations with ~24 h periodicity and thereby synchronize biological processes to diurnal environmental fluctuations. Recently, it has become clear t hat plants harbor more complex gene regulatory circuits within the core circadian clocks than other organisms, inspiring a fundamental question: are all these regulatory interactions between clock genes equally crucial for the establishment and maintenance of circadian rhythms? Our mechanistic simulation for Arabidopsis thaliana demonstrates that at least half of the total regulatory interactions must be present to express the circadian molecular profiles observed in wild-type plants. A set of those essential interactions is called herein a kernel of the circadian system. The kernel structure unbiasedly reveals four interlocked negative feedback loops contributing to circadian rhythms, and three feedback loops among them drive the autonomous oscillation itself. Strikingly, the kernel structure, as well as the whole clock circuitry, is overwhelmingly composed of inhibitory, rather than activating, interactions between genes. We found that this tendency underlies plant circadian molecular profiles which often exhibit sharply-shaped, cuspidate waveforms. Through the generation of these cuspidate profiles, inhibitory interactions may facilitate the global coordination of temporally-distant clock events that are markedly peaked at very specific times of day. Our systematic approach resulting in experimentally-testable predictions provides insights into a design principle of biological clockwork, with implications for synthetic biology.
In mammals, most cells in the brain and peripheral tissues generate circadian (~24hr) rhythms autonomously. These self-sustained rhythms are coordinated and entrained by a master circadian clock in the suprachiasmatic nucleus (SCN). Within the SCN, t he individual rhythms of each neuron are synchronized through intercellular signaling. One important feature of SCN is that the synchronized period is close to the cell population mean of intrinsic periods. In this way, the synchronized period of the SCN stays close to the periods of cells in peripheral tissues. This is important for SCN to entrain cells throughout the body. However, the mechanism that drives the period of the coupled SCN cells to the population mean is not known. We use mathematical modeling and analysis to show that the mechanism of transcription repression plays a pivotal role in regulating the coupled period. Specifically, we use phase response curve analysis to show that the coupled period within the SCN stays near the population mean if transcriptional repression occurs via protein sequestration. In contrast, the coupled period is far from the mean if repression occurs through highly nonlinear Hill-type regulation (e.g. oligomer- or phosphorylation-based repression). Furthermore, we find that the timescale of intercellular coupling needs to be fast compared to that of intracellular feedback to maintain the mean period. These findings reveal the important relationship between the intracellular transcriptional feedback loop and intercellular coupling. This relationship explains why transcriptional repression appears to occur via protein sequestration in multicellular organisms, mammals and Drosophila, in contrast with the phosphorylation-based repression in unicellular organisms. That is, transition to protein sequestration is essential for synchronizing multiple cells with a period close to the population mean (~24hr).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا