ﻻ يوجد ملخص باللغة العربية
The ability of a circadian system to entrain to the 24-hour light-dark cycle is one of its most important properties. A new tool, called the entrainment map, was recently introduced to study this process for a single oscillator. Here we generalize the map to study the effects of light-dark forcing in a hierarchical system consisting of a central circadian oscillator that drives a peripheral circadian oscillator. We develop techniques to reduced the higher dimensional phase space of the coupled system to derive a generalized 2-D entrainment map. Determining the nature of various fixed points, together with an understanding of their stable and unstable manifolds, leads to conditions for existence and stability of periodic orbits of the circadian system. We use the map to investigate how various properties of solutions depend on parameters and initial conditions including the time to and direction of entrainment. We show that the concepts of phase advance and phase delay need to be carefully assessed when considering hierarchical systems.
A stochastic averaging technique based on energy-dependent frequency is extended to dynamical systems with triple-well potential driven by colored noise. The key procedure is the derivation of energy-dependent frequency according to the four differen
The light-based minimum-time circadian entrainment problem for mammals, Neurospora, and Drosophila is studied based on the mathematical models of their circadian gene regulation. These models contain high order nonlinear differential equations. Two m
We consider a class of parametrically forced Hamiltonian systems with one-and-a-half degrees of freedom and study the stability of the dynamics when the frequency of the forcing is relatively high or low. We show that, provided the frequency of the f
Given a piecewise $C^{1+beta}$ map of the interval, possibly with critical points and discontinuities, we construct a symbolic model for invariant probability measures with nonuniform expansion that do not approach the critical points and discontinui
We propose a multiscale chemo-mechanical model of cancer tumour development in an epithelial tissue. The model is based on transformation of normal cells into the cancerous state triggered by a local failure of spatial synchronisation of the circadia