ترغب بنشر مسار تعليمي؟ اضغط هنا

Incremental Cluster Validity Indices for Hard Partitions: Extensions and Comparative Study

118   0   0.0 ( 0 )
 نشر من قبل Leonardo Enzo Brito da Silva
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Validation is one of the most important aspects of clustering, but most approaches have been batch methods. Recently, interest has grown in providing incremental alternatives. This paper extends the incremental cluster validity index (iCVI) family to include increment



قيم البحث

اقرأ أيضاً

This paper presents an adaptive resonance theory predictive mapping (ARTMAP) model which uses incremental cluster validity indices (iCVIs) to perform unsupervised learning, namely iCVI-ARTMAP. Incorporating iCVIs to the decision-making and many-to-on e mapping capabilities of ARTMAP can improve the choices of clusters to which samples are incrementally assigned. These improvements are accomplished by intelligently performing the operations of swapping sample assignments between clusters, splitting and merging clusters, and caching the values of variables when iCVI values need to be recomputed. Using recursive formulations enables iCVI-ARTMAP to considerably reduce the computational burden associated with cluster validity index (CVI)-based offline clustering. Depending on the iCVI and the data set, it can achieve running times up to two orders of magnitude shorter than when using batch CVI computations. In this work, the increment
In streaming data applications incoming samples are processed and discarded, therefore, intelligent decision-making is crucial for the performance of lifelong learning systems. In addition, the order in which samples arrive may heavily affect the per formance of online (and offline) incremental learners. The recently introduced incremental cluster validity indices (iCVIs) provide valuable aid in addressing such class of problems. Their primary use-case has been cluster quality monitoring; nonetheless, they have been very recently integrated in a streaming clustering method to assist the clustering task itself. In this context, the work presented here introduces the first adaptive resonance theory (ART)-based model that uses iCVIs for unsupervised and semi-supervised online learning. Moreover, it shows for the first time how to use iCVIs to regulate ART vigilance via an iCVI-based match tracking mechanism. The model achieves improved accuracy and robustness to ordering effects by integrating an online iCVI framework as module B of a topological adaptive resonance theory predictive mapping (TopoARTMAP) -- thereby being named iCVI-TopoARTMAP -- and by employing iCVI-driven post-processing heuristics at the end of each learning step. The online iCVI framework provides assignments of input samples to clusters at each iteration in accordance to any of several iCVIs. The iCVI-TopoARTMAP maintains useful properties shared by ARTMAP models, such as stability, immunity to catastrophic forgetting, and the many-to-one mapping capability via the map field module. The performance (unsupervised and semi-supervised) and robustness to presentation order (unsupervised) of iCVI-TopoARTMAP were evaluated via experiments with a synthetic data set and deep embeddings of a real-world face image data set.
Increasing volume of Electronic Health Records (EHR) in recent years provides great opportunities for data scientists to collaborate on different aspects of healthcare research by applying advanced analytics to these EHR clinical data. A key requirem ent however is obtaining meaningful insights from high dimensional, sparse and complex clinical data. Data science approaches typically address this challenge by performing feature learning in order to build more reliable and informative feature representations from clinical data followed by supervised learning. In this paper, we propose a predictive modeling approach based on deep learning based feature representations and word embedding techniques. Our method uses different deep architectures (stacked sparse autoencoders, deep belief network, adversarial autoencoders and variational autoencoders) for feature representation in higher-level abstraction to obtain effective and robust features from EHRs, and then build prediction models on top of them. Our approach is particularly useful when the unlabeled data is abundant whereas labeled data is scarce. We investigate the performance of representation learning through a supervised learning approach. Our focus is to present a comparative study to evaluate the performance of different deep architectures through supervised learning and provide insights in the choice of deep feature representation techniques. Our experiments demonstrate that for small data sets, stacked sparse autoencoder demonstrates a superior generality performance in prediction due to sparsity regularization whereas variational autoencoders outperform the competing approaches for large data sets due to its capability of learning the representation distribution.
The ratio between the probability that two distributions $R$ and $P$ give to points $x$ are known as importance weights or propensity scores and play a fundamental role in many different fields, most notably, statistics and machine learning. Among it s applications, importance weights are central to domain adaptation, anomaly detection, and estimations of various divergences such as the KL divergence. We consider the common setting where $R$ and $P$ are only given through samples from each distribution. The vast literature on estimating importance weights is either heuristic, or makes strong assumptions about $R$ and $P$ or on the importance weights themselves. In this paper, we explore a computational perspective to the estimation of importance weights, which factors in the limitations and possibilities obtainable with bounded computational resources. We significantly strengthen previous work that use the MaxEntropy approach, that define the importance weights based on a distribution $Q$ closest to $P$, that looks the same as $R$ on every set $C in mathcal{C}$, where $mathcal{C}$ may be a huge collection of sets. We show that the MaxEntropy approach may fail to assign high average scores to sets $C in mathcal{C}$, even when the average of ground truth weights for the set is evidently large. We similarly show that it may overestimate the average scores to sets $C in mathcal{C}$. We therefore formulate Sandwiching bounds as a notion of set-wise accuracy for importance weights. We study these bounds to show that they capture natural completeness and soundness requirements from the weights. We present an efficient algorithm that under standard learnability assumptions computes weights which satisfy these bounds. Our techniques rely on a new notion of multicalibrated partitions of the domain of the distributions, which appear to be useful objects in their own right.
Parameter pruning is a promising approach for CNN compression and acceleration by eliminating redundant model parameters with tolerable performance degrade. Despite its effectiveness, existing regularization-based parameter pruning methods usually dr ive weights towards zero with large and constant regularization factors, which neglects the fragility of the expressiveness of CNNs, and thus calls for a more gentle regularization scheme so that the networks can adapt during pruning. To achieve this, we propose a new and novel regularization-based pruning method, named IncReg, to incrementally assign different regularization factors to different weights based on their relative importance. Empirical analysis on CIFAR-10 dataset verifies the merits of IncReg. Further extensive experiments with popular CNNs on CIFAR-10 and ImageNet datasets show that IncReg achieves comparable to even better results compared with state-of-the-arts. Our source codes and trained models are available here: https://github.com/mingsun-tse/caffe_increg.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا