ترغب بنشر مسار تعليمي؟ اضغط هنا

Structured Pruning for Efficient ConvNets via Incremental Regularization

189   0   0.0 ( 0 )
 نشر من قبل Huan Wang
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Parameter pruning is a promising approach for CNN compression and acceleration by eliminating redundant model parameters with tolerable performance degrade. Despite its effectiveness, existing regularization-based parameter pruning methods usually drive weights towards zero with large and constant regularization factors, which neglects the fragility of the expressiveness of CNNs, and thus calls for a more gentle regularization scheme so that the networks can adapt during pruning. To achieve this, we propose a new and novel regularization-based pruning method, named IncReg, to incrementally assign different regularization factors to different weights based on their relative importance. Empirical analysis on CIFAR-10 dataset verifies the merits of IncReg. Further extensive experiments with popular CNNs on CIFAR-10 and ImageNet datasets show that IncReg achieves comparable to even better results compared with state-of-the-arts. Our source codes and trained models are available here: https://github.com/mingsun-tse/caffe_increg.



قيم البحث

اقرأ أيضاً

Parameter pruning is a promising approach for CNN compression and acceleration by eliminating redundant model parameters with tolerable performance loss. Despite its effectiveness, existing regularization-based parameter pruning methods usually drive weights towards zero with large and constant regularization factors, which neglects the fact that the expressiveness of CNNs is fragile and needs a more gentle way of regularization for the networks to adapt during pruning. To solve this problem, we propose a new regularization-based pruning method (named IncReg) to incrementally assign different regularization factors to different weight groups based on their relative importance, whose effectiveness is proved on popular CNNs compared with state-of-the-art methods.
Structured pruning is an effective compression technique to reduce the computation of neural networks, which is usually achieved by adding perturbations to reduce network parameters at the cost of slightly increasing training loss. A more reasonable approach is to find a sparse minimizer along the flat minimum valley found by optimizers, i.e. stochastic gradient descent, which keeps the training loss constant. To achieve this goal, we propose the structured directional pruning based on orthogonal projecting the perturbations onto the flat minimum valley. We also propose a fast solver sDprun and further prove that it achieves directional pruning asymptotically after sufficient training. Experiments using VGG-Net and ResNet on CIFAR-10 and CIFAR-100 datasets show that our method obtains the state-of-the-art pruned accuracy (i.e. 93.97% on VGG16, CIFAR-10 task) without retraining. Experiments using DNN, VGG-Net and WRN28X10 on MNIST, CIFAR-10 and CIFAR-100 datasets demonstrate our method performs structured directional pruning, reaching the same minimum valley as the optimizer.
Network pruning is widely used to compress Deep Neural Networks (DNNs). The Soft Filter Pruning (SFP) method zeroizes the pruned filters during training while updating them in the next training epoch. Thus the trained information of the pruned filter s is completely dropped. To utilize the trained pruned filters, we proposed a SofteR Filter Pruning (SRFP) method and its variant, Asymptotic SofteR Filter Pruning (ASRFP), simply decaying the pruned weights with a monotonic decreasing parameter. Our methods perform well across various networks, datasets and pruning rates, also transferable to weight pruning. On ILSVRC-2012, ASRFP prunes 40% of the parameters on ResNet-34 with 1.63% top-1 and 0.68% top-5 accuracy improvement. In theory, SRFP and ASRFP are an incremental regularization of the pruned filters. Besides, We note that SRFP and ASRFP pursue better results while slowing down the speed of convergence.
In this paper, we propose a novel progressive parameter pruning method for Convolutional Neural Network acceleration, named Structured Probabilistic Pruning (SPP), which effectively prunes weights of convolutional layers in a probabilistic manner. Un like existing deterministic pruning approaches, where unimportant weights are permanently eliminated, SPP introduces a pruning probability for each weight, and pruning is guided by sampling from the pruning probabilities. A mechanism is designed to increase and decrease pruning probabilities based on importance criteria in the training process. Experiments show that, with 4x speedup, SPP can accelerate AlexNet with only 0.3% loss of top-5 accuracy and VGG-16 with 0.8% loss of top-5 accuracy in ImageNet classification. Moreover, SPP can be directly applied to accelerate multi-branch CNN networks, such as ResNet, without specific adaptations. Our 2x speedup ResNet-50 only suffers 0.8% loss of top-5 accuracy on ImageNet. We further show the effectiveness of SPP on transfer learning tasks.
A deep neural network model is a powerful framework for learning representations. Usually, it is used to learn the relation $x to y$ by exploiting the regularities in the input $x$. In structured output prediction problems, $y$ is multi-dimensional a nd structural relations often exist between the dimensions. The motivation of this work is to learn the output dependencies that may lie in the output data in order to improve the prediction accuracy. Unfortunately, feedforward networks are unable to exploit the relations between the outputs. In order to overcome this issue, we propose in this paper a regularization scheme for training neural networks for these particular tasks using a multi-task framework. Our scheme aims at incorporating the learning of the output representation $y$ in the training process in an unsupervised fashion while learning the supervised mapping function $x to y$. We evaluate our framework on a facial landmark detection problem which is a typical structured output task. We show over two public challenging datasets (LFPW and HELEN) that our regularization scheme improves the generalization of deep neural networks and accelerates their training. The use of unlabeled data and label-only data is also explored, showing an additional improvement of the results. We provide an opensource implementation (https://github.com/sbelharbi/structured-output-ae) of our framework.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا