ترغب بنشر مسار تعليمي؟ اضغط هنا

Incremental cluster validity index-guided online learning for performance and robustness to presentation order

130   0   0.0 ( 0 )
 نشر من قبل Leonardo Enzo Brito da Silva
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In streaming data applications incoming samples are processed and discarded, therefore, intelligent decision-making is crucial for the performance of lifelong learning systems. In addition, the order in which samples arrive may heavily affect the performance of online (and offline) incremental learners. The recently introduced incremental cluster validity indices (iCVIs) provide valuable aid in addressing such class of problems. Their primary use-case has been cluster quality monitoring; nonetheless, they have been very recently integrated in a streaming clustering method to assist the clustering task itself. In this context, the work presented here introduces the first adaptive resonance theory (ART)-based model that uses iCVIs for unsupervised and semi-supervised online learning. Moreover, it shows for the first time how to use iCVIs to regulate ART vigilance via an iCVI-based match tracking mechanism. The model achieves improved accuracy and robustness to ordering effects by integrating an online iCVI framework as module B of a topological adaptive resonance theory predictive mapping (TopoARTMAP) -- thereby being named iCVI-TopoARTMAP -- and by employing iCVI-driven post-processing heuristics at the end of each learning step. The online iCVI framework provides assignments of input samples to clusters at each iteration in accordance to any of several iCVIs. The iCVI-TopoARTMAP maintains useful properties shared by ARTMAP models, such as stability, immunity to catastrophic forgetting, and the many-to-one mapping capability via the map field module. The performance (unsupervised and semi-supervised) and robustness to presentation order (unsupervised) of iCVI-TopoARTMAP were evaluated via experiments with a synthetic data set and deep embeddings of a real-world face image data set.



قيم البحث

اقرأ أيضاً

Validation is one of the most important aspects of clustering, but most approaches have been batch methods. Recently, interest has grown in providing incremental alternatives. This paper extends the incremental cluster validity index (iCVI) family to include increment
Learning-to-rank (LTR) has become a key technology in E-commerce applications. Most existing LTR approaches follow a supervised learning paradigm from offline labeled data collected from the online system. However, it has been noticed that previous L TR models can have a good validation performance over offline validation data but have a poor online performance, and vice versa, which implies a possible large inconsistency between the offline and online evaluation. We investigate and confirm in this paper that such inconsistency exists and can have a significant impact on AliExpress Search. Reasons for the inconsistency include the ignorance of item context during the learning, and the offline data set is insufficient for learning the context. Therefore, this paper proposes an evaluator-generator framework for LTR with item context. The framework consists of an evaluator that generalizes to evaluate recommendations involving the context, and a generator that maximizes the evaluator score by reinforcement learning, and a discriminator that ensures the generalization of the evaluator. Extensive experiments in simulation environments and AliExpress Search online system show that, firstly, the classic data-based metrics on the offline dataset can show significant inconsistency with online performance, and can even be misleading. Secondly, the proposed evaluator score is significantly more consistent with the online performance than common ranking metrics. Finally, as the consequence, our method achieves a significant improvement (textgreater$2%$) in terms of Conversion Rate (CR) over the industrial-level fine-tuned model in online A/B tests.
A central capability of a long-lived reinforcement learning (RL) agent is to incrementally adapt its behavior as its environment changes, and to incrementally build upon previous experiences to facilitate future learning in real-world scenarios. In t his paper, we propose LifeLong Incremental Reinforcement Learning (LLIRL), a new incremental algorithm for efficient lifelong adaptation to dynamic environments. We develop and maintain a library that contains an infinite mixture of parameterized environment models, which is equivalent to clustering environment parameters in a latent space. The prior distribution over the mixture is formulated as a Chinese restaurant process (CRP), which incrementally instantiates new environment models without any external information to signal environmental changes in advance. During lifelong learning, we employ the expectation maximization (EM) algorithm with online Bayesian inference to update the mixture in a fully incremental manner. In EM, the E-step involves estimating the posterior expectation of environment-to-cluster assignments, while the M-step updates the environment parameters for future learning. This method allows for all environment models to be adapted as necessary, with new models instantiated for environmental changes and old models retrieved when previously seen environments are encountered again. Experiments demonstrate that LLIRL outperforms relevant existing methods, and enables effective incremental adaptation to various dynamic environments for lifelong learning.
This paper presents an adaptive resonance theory predictive mapping (ARTMAP) model which uses incremental cluster validity indices (iCVIs) to perform unsupervised learning, namely iCVI-ARTMAP. Incorporating iCVIs to the decision-making and many-to-on e mapping capabilities of ARTMAP can improve the choices of clusters to which samples are incrementally assigned. These improvements are accomplished by intelligently performing the operations of swapping sample assignments between clusters, splitting and merging clusters, and caching the values of variables when iCVI values need to be recomputed. Using recursive formulations enables iCVI-ARTMAP to considerably reduce the computational burden associated with cluster validity index (CVI)-based offline clustering. Depending on the iCVI and the data set, it can achieve running times up to two orders of magnitude shorter than when using batch CVI computations. In this work, the increment
Modern deep learning approaches have achieved great success in many vision applications by training a model using all available task-specific data. However, there are two major obstacles making it challenging to implement for real life applications: (1) Learning new classes makes the trained model quickly forget old classes knowledge, which is referred to as catastrophic forgetting. (2) As new observations of old classes come sequentially over time, the distribution may change in unforeseen way, making the performance degrade dramatically on future data, which is referred to as concept drift. Current state-of-the-art incremental learning methods require a long time to train the model whenever new classes are added and none of them takes into consideration the new observations of old classes. In this paper, we propose an incremental learning framework that can work in the challenging online learning scenario and handle both new classes data and new observations of old classes. We address problem (1) in online mode by introducing a modified cross-distillation loss together with a two-step learning technique. Our method outperforms the results obtained from current state-of-the-art offline incremental learning methods on the CIFAR-100 and ImageNet-1000 (ILSVRC 2012) datasets under the same experiment protocol but in online scenario. We also provide a simple yet effective method to mitigate problem (2) by updating exemplar set using the feature of each new observation of old classes and demonstrate a real life application of online food image classification based on our complete framework using the Food-101 dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا