ﻻ يوجد ملخص باللغة العربية
In streaming data applications incoming samples are processed and discarded, therefore, intelligent decision-making is crucial for the performance of lifelong learning systems. In addition, the order in which samples arrive may heavily affect the performance of online (and offline) incremental learners. The recently introduced incremental cluster validity indices (iCVIs) provide valuable aid in addressing such class of problems. Their primary use-case has been cluster quality monitoring; nonetheless, they have been very recently integrated in a streaming clustering method to assist the clustering task itself. In this context, the work presented here introduces the first adaptive resonance theory (ART)-based model that uses iCVIs for unsupervised and semi-supervised online learning. Moreover, it shows for the first time how to use iCVIs to regulate ART vigilance via an iCVI-based match tracking mechanism. The model achieves improved accuracy and robustness to ordering effects by integrating an online iCVI framework as module B of a topological adaptive resonance theory predictive mapping (TopoARTMAP) -- thereby being named iCVI-TopoARTMAP -- and by employing iCVI-driven post-processing heuristics at the end of each learning step. The online iCVI framework provides assignments of input samples to clusters at each iteration in accordance to any of several iCVIs. The iCVI-TopoARTMAP maintains useful properties shared by ARTMAP models, such as stability, immunity to catastrophic forgetting, and the many-to-one mapping capability via the map field module. The performance (unsupervised and semi-supervised) and robustness to presentation order (unsupervised) of iCVI-TopoARTMAP were evaluated via experiments with a synthetic data set and deep embeddings of a real-world face image data set.
Validation is one of the most important aspects of clustering, but most approaches have been batch methods. Recently, interest has grown in providing incremental alternatives. This paper extends the incremental cluster validity index (iCVI) family to include increment
Learning-to-rank (LTR) has become a key technology in E-commerce applications. Most existing LTR approaches follow a supervised learning paradigm from offline labeled data collected from the online system. However, it has been noticed that previous L
A central capability of a long-lived reinforcement learning (RL) agent is to incrementally adapt its behavior as its environment changes, and to incrementally build upon previous experiences to facilitate future learning in real-world scenarios. In t
This paper presents an adaptive resonance theory predictive mapping (ARTMAP) model which uses incremental cluster validity indices (iCVIs) to perform unsupervised learning, namely iCVI-ARTMAP. Incorporating iCVIs to the decision-making and many-to-on
Modern deep learning approaches have achieved great success in many vision applications by training a model using all available task-specific data. However, there are two major obstacles making it challenging to implement for real life applications: