ﻻ يوجد ملخص باللغة العربية
While research on adversarial examples in machine learning for images has been prolific, similar attacks on deep learning (DL) for radio frequency (RF) signals and their mitigation strategies are scarcely addressed in the published work, with only one recent publication in the RF domain [1]. RF adversarial examples (AdExs) can cause drastic, targeted misclassification results mostly in spectrum sensing/ survey applications (e.g. BPSK mistaken for 8-PSK) with minimal waveform perturbation. It is not clear if the RF AdExs maintain their effects in the physical world, i.e., when AdExs are delivered over-the-air (OTA). Our research on deep learning AdExs and proposed defense mechanisms are RF-centric, and incorporate physical world, OTA effects. We here present defense mechanisms based on statistical tests. One test to detect AdExs utilizes Peak-to- Average-Power-Ratio (PAPR) of the DL data points delivered OTA, while another statistical test uses the Softmax outputs of the DL classifier, which corresponds to the probabilities the classifier assigns to each of the trained classes. The former test leverages the RF nature of the data, and the latter is universally applicable to AdExs regardless of their origin. Both solutions are shown as viable mitigation methods to subvert adversarial attacks against communications and radar sensing systems.
As a new programming paradigm, deep learning has expanded its application to many real-world problems. At the same time, deep learning based software are found to be vulnerable to adversarial attacks. Though various defense mechanisms have been propo
Graph deep learning models, such as graph convolutional networks (GCN) achieve remarkable performance for tasks on graph data. Similar to other types of deep models, graph deep learning models often suffer from adversarial attacks. However, compared
Deep learning has shown its power in many applications, including object detection in images, natural-language understanding, and speech recognition. To make it more accessible to end users, many deep learning models are now embedded in mobile apps.
In this work we propose Energy Attack, a transfer-based black-box $L_infty$-adversarial attack. The attack is parameter-free and does not require gradient approximation. In particular, we first obtain white-box adversarial perturbations of a surrogat
Powerful adversarial attack methods are vital for understanding how to construct robust deep neural networks (DNNs) and for thoroughly testing defense techniques. In this paper, we propose a black-box adversarial attack algorithm that can defeat both