ﻻ يوجد ملخص باللغة العربية
How fast must an oriented collection of extensile swimmers swim to escape the instability of viscous active suspensions? We show that the answer lies in the dimensionless combination $R=rho v_0^2/2sigma_a$, where $rho$ is the suspension mass density, $v_0$ the swim speed and $sigma_a$ the active stress. Linear stability analysis shows that for small $R$ disturbances grow at a rate linear in their wavenumber $q$, and that the dominant instability mode involves twist. The resulting steady state in our numerical studies is isotropic hedgehog-defect turbulence. Past a first threshold $R$ of order unity we find a slower growth rate, of $O(q^2)$; the numerically observed steady state is {it phase-turbulent}: noisy but {it aligned} on average. We present numerical evidence in three and two dimensions that this inertia driven flocking transition is continuous, with a correlation length that grows on approaching the transition. For much larger $R$ we find an aligned state linearly stable to perturbations at all $q$. Our predictions should be testable in suspensions of mesoscale swimmers [D Klotsa, Soft Matter textbf{15}, 8946 (2019)].
Active matter is not only indispensable to our understanding of diverse biological processes, but also provides a fertile ground for discovering novel physics. Many emergent properties impossible for equilibrium systems have been demonstrated in acti
Molecular dynamics simulations confirm recent extensional flow experiments showing ring polymer melts exhibit strong extension-rate thickening of the viscosity at Weissenberg numbers $Wi<<1$. Thickening coincides with the extreme elongation of a mino
We derive a mobility tensor for many cylindrical objects embedded in a viscous sheet. This tensor guarantees a positive dissipation rate for any configuration of particles and forces, analogously to the Rotne-Prager-Yamakawa tensor for spherical part
We present a multi-scale modeling and simulation framework for low-Reynolds number hydrodynamics of shape-changing immersed objects, e.g., biological microswimmers and active surfaces. The key idea is to consider principal shape changes as generalize
Particles of low velocity, travelling without dissipation in a superfluid, can interact and emit sound when they collide. We propose a minimal model in which the equations of motion of the particles, including a short-range repulsive force, are self-