ﻻ يوجد ملخص باللغة العربية
We describe an optimal adversarial attack formulation against autoregressive time series forecast using Linear Quadratic Regulator (LQR). In this threat model, the environment evolves according to a dynamical system; an autoregressive model observes the current environment state and predicts its future values; an attacker has the ability to modify the environment state in order to manipulate future autoregressive forecasts. The attackers goal is to force autoregressive forecasts into tracking a target trajectory while minimizing its attack expenditure. In the white-box setting where the attacker knows the environment and forecast models, we present the optimal attack using LQR for linear models, and Model Predictive Control (MPC) for nonlinear models. In the black-box setting, we combine system identification and MPC. Experiments demonstrate the effectiveness of our attacks.
Stochastic processes generated by non-stationary distributions are difficult to represent with conventional models such as Gaussian processes. This work presents Recurrent Autoregressive Flows as a method toward general stochastic process modeling wi
Recently, researchers have discovered that the state-of-the-art object classifiers can be fooled easily by small perturbations in the input unnoticeable to human eyes. It is also known that an attacker can generate strong adversarial examples if she
We investigate the problem of online learning, which has gained significant attention in recent years due to its applicability in a wide range of fields from machine learning to game theory. Specifically, we study the online optimization of mixable l
Deep neural networks (DNNs) are vulnerable to the emph{backdoor attack}, which intends to embed hidden backdoors in DNNs by poisoning training data. The attacked model behaves normally on benign samples, whereas its prediction will be changed to a pa
We introduce a deep, generative autoencoder capable of learning hierarchies of distributed representations from data. Successive deep stochastic hidden layers are equipped with autoregressive connections, which enable the model to be sampled from qui