ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep AutoRegressive Networks

132   0   0.0 ( 0 )
 نشر من قبل Karol Gregor
 تاريخ النشر 2013
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a deep, generative autoencoder capable of learning hierarchies of distributed representations from data. Successive deep stochastic hidden layers are equipped with autoregressive connections, which enable the model to be sampled from quickly and exactly via ancestral sampling. We derive an efficient approximate parameter estimation method based on the minimum description length (MDL) principle, which can be seen as maximising a variational lower bound on the log-likelihood, with a feedforward neural network implementing approximate inference. We demonstrate state-of-the-art generative performance on a number of classic data sets: several UCI data sets, MNIST and Atari 2600 games.



قيم البحث

اقرأ أيضاً

Autoregressive models use chain rule to define a joint probability distribution as a product of conditionals. These conditionals need to be normalized, imposing constraints on the functional families that can be used. To increase flexibility, we prop ose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariate log-conditionals (scores), which need not be normalized. To train AR-CSM, we introduce a new divergence between distributions named Composite Score Matching (CSM). For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training. Compared to previous score matching algorithms, our method is more scalable to high dimensional data and more stable to optimize. We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
It has been widely assumed that a neural network cannot be recovered from its outputs, as the network depends on its parameters in a highly nonlinear way. Here, we prove that in fact it is often possible to identify the architecture, weights, and bia ses of an unknown deep ReLU network by observing only its output. Every ReLU network defines a piecewise linear function, where the boundaries between linear regions correspond to inputs for which some neuron in the network switches between inactive and active ReLU states. By dissecting the set of region boundaries into components associated with particular neurons, we show both theoretically and empirically that it is possible to recover the weights of neurons and their arrangement within the network, up to isomorphism.
Stochastic processes generated by non-stationary distributions are difficult to represent with conventional models such as Gaussian processes. This work presents Recurrent Autoregressive Flows as a method toward general stochastic process modeling wi th normalizing flows. The proposed method defines a conditional distribution for each variable in a sequential process by conditioning the parameters of a normalizing flow with recurrent neural connections. Complex conditional relationships are learned through the recurrent network parameters. In this work, we present an initial design for a recurrent flow cell and a method to train the model to match observed empirical distributions. We demonstrate the effectiveness of this class of models through a series of experiments in which models are trained on three complex stochastic processes. We highlight the shortcomings of our current formulation and suggest some potential solutions.
In this paper, we introduce transformations of deep rectifier networks, enabling the conversion of deep rectifier networks into shallow rectifier networks. We subsequently prove that any rectifier net of any depth can be represented by a maximum of a number of functions that can be realized by a shallow network with a single hidden layer. The transformations of both deep rectifier nets and deep residual nets are conducted to demonstrate the advantages of the residual nets over the conventional neural nets and the advantages of the deep neural nets over the shallow neural nets. In summary, for two rectifier nets with different depths but with same total number of hidden units, the corresponding single hidden layer representation of the deeper net is much more complex than the corresponding single hidden representation of the shallower net. Similarly, for a residual net and a conventional rectifier net with the same structure except for the skip connections in the residual net, the corresponding single hidden layer representation of the residual net is much more complex than the corresponding single hidden layer representation of the conventional net.
Deep neural networks are widely used for nonlinear function approximation with applications ranging from computer vision to control. Although these networks involve the composition of simple arithmetic operations, it can be very challenging to verify whether a particular network satisfies certain input-output properties. This article surveys methods that have emerged recently for soundly verifying such properties. These methods borrow insights from reachability analysis, optimization, and search. We discuss fundamental differences and connections between existing algorithms. In addition, we provide pedagogical implementations of existing methods and compare them on a set of benchmark problems.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا