ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous Hall viscosity at the Weyl semimetal/insulator transition

56   0   0.0 ( 0 )
 نشر من قبل Karl Landsteiner
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that 3D Lifshitz fermions arising as the critical theory at the Weyl semimetal/insulator transition naturally develop an anomalous Hall viscosity at finite temperature. We discuss how to couple the system to non-relativistic background sources for stress-tensor and momentum currents via a form of Newton-Cartan geometry with torsion and derive the Kubo formulas for the Hall viscosities. While the Lifshitz system that arises most naturally has scaling exponent $z=2$ we also generalize the theory for arbitrary Lifshitz scaling $z$ and show that, in the limit $z to 0$, it may be given a Chern-Simons interpretation by dimensionally reducing along the anisotropic direction. The Hall viscosities are expressed in terms of zeta functions and their temperature dependence is dictated by the scaling exponent.

قيم البحث

اقرأ أيضاً

235 - Yan Liu , Junkun Zhao 2018
We study a holographic model which exhibits a quantum phase transition from the strongly interacting Weyl semimetal phase to an insulating phase. In the holographic insulating phase there is a hard gap in the real part of frequency dependent diagonal conductivities. However, the anomalous Hall conductivity is nonzero at zero frequency, indicting that it is a Chern insulator. This holographic quantum phase transition is always of first order, signified by a discontinuous anomalous Hall conductivity at the phase transition, in contrast to the very continuous holographic Weyl semimetal/trivial semimetal phase transition. Our work reveals the novel phase structure of strongly interacting Weyl semimetal.
Disordered non-interacting systems in sufficiently high dimensions have been predicted to display a non-Anderson disorder-driven transition that manifests itself in the critical behaviour of the density of states and other physical observables. Recen tly the critical properties of this transition have been extensively studied for the specific case of Weyl semimetals by means of numerical and renormalisation-group approaches. Despite this, the values of the critical exponents at such a transition in a Weyl semimetal are currently under debate. We present an independent calculation of the critical exponents using a two-loop renormalisation-group approach for Weyl fermions in $2-varepsilon$ dimensions and resolve controversies currently existing in the literature.
The ordinary Hall effect refers to generation of a transverse voltage upon exertion of an electric field in the presence of an out-of-plane magnetic field. While a linear Hall effect is commonly observed in systems with breaking time-reversal symmetr y via an applied external magnetic field or their intrinsic magnetization1, 2, a nonlinear Hall effect can generically occur in non-magnetic systems associated with a nonvanishing Berry curvature dipole3. Here we report, observations of a nonlinear optical Hall effect in a Weyl semimetal WTe2 without an applied magnetic field at room temperature. We observe an optical Hall effect resulting in a polarization rotation of the reflected light, referred to as the nonlinear Kerr rotation. The nonlinear Kerr rotation linearly depends on the charge current and optical power, which manifests the fourth-order nonlinearity. We quantitatively determine the fourth-order susceptibility, which exhibits strong anisotropy depending on the directions of the charge current and the light polarization. Employing symmetry analysis of Berry curvature multipoles, we demonstrate that the nonlinear Kerr rotations can arise from the Berry curvature hexapole allowed by the crystalline symmetries of WTe2. There also exist marginal signals that are incompatible with the symmetries, which suggest a hidden phase associated with the nonlinear process.
208 - M. N. Chen , W. C. Chen , 2021
In this work, we propose a ferromagnetic Bi$_2$Se$_3$ as a candidate to hold the coexistence of Weyl- and nodal-line semimetal phases, which breaks the time reversal symmetry. We demonstrate that the type-I Weyl semimetal phase, type-I-, type-II- a nd their hybrid nodal-line semimetal phases can arise by tuning the Zeeman exchange field strength and the Fermi velocity. Their topological responses under U(1) gauge field are also discussed. Our results raise a new way for realizing Weyl and nodal-line semimetals and will be helpful in understanding the topological transport phenomena in three-dimensional material systems.
The phase transitions from one plateau to the next plateau or to an insulator in quantum Hall and quantum anomalous Hall (QAH) systems have revealed universal scaling behaviors. A magnetic-field-driven quantum phase transition from a QAH insulator to an axion insulator was recently demonstrated in magnetic topological insulator sandwich samples. Here, we show that the temperature dependence of the derivative of the longitudinal resistance on magnetic field at the transition point follows a characteristic power-law that indicates a universal scaling behavior for the QAH to axion insulator phase transition. Similar to the quantum Hall plateau to plateau transition, the QAH to axion insulator transition can also be understood by the Chalker-Coddington network model. We extract a critical exponent k~ 0.38 in agreement with recent high-precision numerical results on the correlation length exponent of the Chalker-Coddington model at v ~ 2.6, rather than the generally-accepted value of 2.33.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا