ﻻ يوجد ملخص باللغة العربية
The phase transitions from one plateau to the next plateau or to an insulator in quantum Hall and quantum anomalous Hall (QAH) systems have revealed universal scaling behaviors. A magnetic-field-driven quantum phase transition from a QAH insulator to an axion insulator was recently demonstrated in magnetic topological insulator sandwich samples. Here, we show that the temperature dependence of the derivative of the longitudinal resistance on magnetic field at the transition point follows a characteristic power-law that indicates a universal scaling behavior for the QAH to axion insulator phase transition. Similar to the quantum Hall plateau to plateau transition, the QAH to axion insulator transition can also be understood by the Chalker-Coddington network model. We extract a critical exponent k~ 0.38 in agreement with recent high-precision numerical results on the correlation length exponent of the Chalker-Coddington model at v ~ 2.6, rather than the generally-accepted value of 2.33.
We report a current scaling study of a quantum phase transition between a quantum anomalous Hall insulator and a trivial insulator on the surface of a heterostructure film of magnetic topological insulators. The transition was observed by tilting the
The scaling physics of quantum Hall transport in optimized topological insulators with a plateau precision of ~1/1000 e2/h is considered. Two exponential scaling regimes are observed in temperature-dependent transport dissipation, one of which accord
The magnetoelectric effect arises from the coupling between magnetic and electric properties in materials. The Z2 invariant of topological insulators (TIs) leads to a quantized version of this phenomenon, known as the topological magnetoelectric (TME
The quantized version of anomalous Hall effect realized in magnetic topological insulators (MTIs) has great potential for the development of topological quantum physics and low-power electronic/spintronic applications. To enable dissipationless chira
We report quantum Hall experiments on the plateau-insulator transition in a low mobility In_{.53} Ga_{.47} As/InP heterostructure. The data for the longitudinal resistance rho_{xx} follow an exponential law and we extract a critical exponent kappa= .