ترغب بنشر مسار تعليمي؟ اضغط هنا

Weyl semimetal/insulator transition from holography

236   0   0.0 ( 0 )
 نشر من قبل Yan Liu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a holographic model which exhibits a quantum phase transition from the strongly interacting Weyl semimetal phase to an insulating phase. In the holographic insulating phase there is a hard gap in the real part of frequency dependent diagonal conductivities. However, the anomalous Hall conductivity is nonzero at zero frequency, indicting that it is a Chern insulator. This holographic quantum phase transition is always of first order, signified by a discontinuous anomalous Hall conductivity at the phase transition, in contrast to the very continuous holographic Weyl semimetal/trivial semimetal phase transition. Our work reveals the novel phase structure of strongly interacting Weyl semimetal.



قيم البحث

اقرأ أيضاً

108 - Xuanting Ji , Yan Liu , Ya-Wen Sun 2021
We present effective field theories for the weakly coupled Weyl-$mathrm{Z}_2$ semimetal, as well as the holographic realization for the strongly coupled case. In both cases, the anomalous systems have both the chiral anomaly and the $mathrm{Z}_2$ ano maly and possess topological quantum phase transitions from the Weyl-$mathrm{Z}_2$ semimetal phases to partly or fully topological trivial phases. We find that the topological phase transition is characterized by the anomalous transport parameters, i.e. the anomalous Hall conductivity and the $mathrm{Z}_2$ anomalous Hall conductivity. These two parameters are nonzero at the Weyl-$mathrm{Z}_2$ semimetal phase and vanish at the topologically trivial phases. In the holographic case, the different behavior between the two anomalous transport coefficients is discussed. Our work reveals the novel phase structure of strongly interacting Weyl-$mathrm{Z}_2$ semimetal with two pairs of nodes.
We present a holographic model of a topological Weyl semimetal. A key ingredient is a time-reversal breaking parameter and a mass deformation. Upon varying the ratio of mass to time-reversal breaking parameter the model undergoes a quantum phase tran sition from a topologically nontrivial semimetal to a trivial one. The topological nontrivial semimetal is characterised by the presence of an anomalous Hall effect. The results can be interpreted in terms of the holographic renormalization group (RG) flow leading to restoration of time-reversal at the end point of the RG flow in the trivial phase.
We study the chiral vortical conductivity in a holographic Weyl semimetal model, which describes a topological phase transition from the strongly coupled topologically nontrivial phase to a trivial phase. We focus on the temperature dependence of the chiral vortical conductivity where the mixed gauge-gravitational anomaly plays a crucial role. After a proper renormalization of the chiral vortical conductivity by the anomalous Hall conductivity and temperature squared, we find that at low temperature in both the Weyl semimetal phase and the quantum critical region this renormalized ratio stays as universal constants. More intriguingly, this ratio in the quantum critical region depends only on the emergent Lifshitz scaling exponent at the quantum critical point.
88 - Junkun Zhao 2021
We study the effects of momentum relaxation on the holographic Weyl semimetal which exhibits a topological quantum phase transition between the Weyl semimetal phase and a topological trivial phase. The conservation of momentum in the field theory is broken by the axion fields in holography. The topological Weyl semimetal phase is characterized by a nontrivial anomalous Hall conductivity. We find that the critical value of the phase transition decreases when we increase the momentum relaxation strength up to a special value, above which it goes to zero. This indicates that the Weyl semimetal phase shrinks and finally disappears as the momentum relaxation strength is increased, which is consistent with the weakly coupled field theory predictions. We also study the behavior of transverse/longitudinal conductivities and low temperature dependence of the d.c.resistivities with respect to momentum relaxation strength.
We study generic types of holographic matter residing in Lifshitz invariant defect field theory as modeled by adding probe D-branes in the bulk black hole spacetime characterized by dynamical exponent $z$ and with hyperscaling violation exponent $the ta$. Our main focus will be on the collective excitations of the dense matter in the presence of an external magnetic field. Constraining the defect field theory to 2+1 dimensions, we will also allow the gauge fields become dynamical and study the properties of a strongly coupled anyonic fluid. We will deduce the universal properties of holographic matter and find that the Einstein relation always holds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا